Skip to content

How does one load and do inference on fine-tuned LLama 3 using bnb_dora train script? #57

@pe-hy

Description

@pe-hy

I used this script to fine tune LLama 3 (from AnswerAI blog post), what I'm left with is a state dict that I am unable to use to replace layers in the original model following the Converting the State Dict.ipynb notebook. Since it does not work (KeyError with mismatching key names of tensors/new_sd), how does one obtain a model from this state dict?

export CUDA_VISIBLE_DEVICES=0,1
python fsdp_qlora/train.py \
--train_type bnb_dora \
--model_name meta-llama/Meta-Llama-3-8B \
--dataset orca_math \
--dataset_samples 10000 \
--batch_size 4 \
--context_length 2048 \
--gradient_accumulation_steps 2 \
--sharding_strategy full_shard \
--use_gradient_checkpointing true \
--reentrant_checkpointing true \
--use_cpu_offload false \
--use_activation_cpu_offload false \
--log_to wandb \
--project_name "fsdp-quantized-ft-exps" \
--save_model true \
--output_dir models/Llama-3-8b-orca-math-10k-bnb-QDoRA

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions