Skip to content

Commit 6e2e2c0

Browse files
committed
Finish description
1 parent c263c44 commit 6e2e2c0

File tree

1 file changed

+39
-13
lines changed

1 file changed

+39
-13
lines changed
Lines changed: 39 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,25 +1,41 @@
11
# Infinite linear elastic plate with hole
22

3-
We consider the case of an infinite plate with a circular hole in the center. The plate is subjected to uniform tensile load at infinity. The analytical solution for the stress field has been derived by Kirsch in 1898 [@Kirsch1898].
3+
We consider the case of an infinite plate with a circular hole in the center. The plate is subjected to uniform tensile load $p$ at infinity. The analytical solution for the stress field has been derived by Kirsch in 1898 [@Kirsch1898].
44
<!-- include an svg picture here-->
55
![Infinite linear elastic plate with hole](plate-with-hole.svg)
66

7-
The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction, then at
7+
The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction with load $p$, then at
88
a point with polar coordinates $(r,\theta)\in\mathbb R_+ \times \mathbb R$, the polar stress components are given by
99

1010
$$
1111
\begin{aligned}
12-
\sigma_r &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
13-
\sigma_\theta &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
14-
\sigma_{r\theta} &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
12+
\sigma_{rr}(r,\theta) &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
13+
\sigma_{\theta\theta}(r,\theta) &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
14+
\sigma_{r\theta}(r,\theta) &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
1515
\end{aligned}
1616
$$
1717

18-
* What is $p$
19-
* What are $E,\nu$
20-
* Cartesian coordiantes
21-
* Neumann BCs
22-
* write Dirichlet with set
18+
In order to write the stresses in a cartesian coordiante system, they need to be rotated by $\theta$, which results in
19+
20+
$$
21+
\begin{aligned}
22+
\sigma_{xx} (r,\theta) &= \frac{3 a^{4} p \cos{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(1.5 \cos{\left(2 \theta \right)} + \cos{\left(4 \theta \right)}\right)}{r^{2}} + p \\
23+
\sigma_{yy} (r,\theta)&= - \frac{3 a^{4} p \cos{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(\frac{\cos{\left(2 \theta \right)}}{2} - \cos{\left(4 \theta \right)}\right)}{r^{2}}\\
24+
\sigma_{xy} (r,\theta) &= \frac{3 a^{4} p \sin{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(\frac{\sin{\left(2 \theta \right)}}{2} + \sin{\left(4 \theta \right)}\right)}{r^{2}}
25+
\end{aligned}
26+
$$
27+
28+
with the full stress tensor solution given by
29+
30+
$$
31+
\boldsymbol\sigma_\mathrm{analytical} (r,\theta)= \begin{bmatrix} \sigma_{xx} & \sigma_{xy}\\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}.
32+
$$
33+
34+
or for a cartesion point $(x,y)$:
35+
36+
$$
37+
\boldsymbol\sigma_\mathrm{analytical} (x,y)=\boldsymbol\sigma_\mathrm{analytical} \left(\sqrt{x^2 + y^2},\arccos\frac{x}{\sqrt{x^2+y^2}}\right)
38+
$$
2339

2440
In order to transform this into a practical benchmark, we consider a rectangular subdomain
2541
of the infinite plate around the hole. The boundary conditions of the subdomain are determined
@@ -28,10 +44,20 @@ of the rectangular domain and assuming symmetry conditions at the edges. Let $\O
2844

2945
$$
3046
\begin{aligned}
31-
\mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \boldsymbol u \in \Omega & \\
47+
\mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \text{ on } \Omega & \\
3248
\boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
3349
\boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
34-
\boldsymbol u_y &=0 & y=0& \text{Dirichlet BC}\\
35-
\boldsymbol u_x &=0 & x=0& \text{Dirichlet BC}\\
50+
\boldsymbol u_y &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | y=0\rbrace& \text{ Dirichlet BC}\\
51+
\boldsymbol u_x &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | x=0\rbrace& \text{ Dirichlet BC}\\
52+
\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n&\text{ on }\lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace& \text{ Neumann BC}
3653
\end{aligned}
3754
$$
55+
56+
The weak form is
57+
58+
$$
59+
\int_{\Omega} \boldsymbol\varepsilon(\delta\boldsymbol{u}) : \boldsymbol{\sigma} \mathrm{d}{\boldsymbol{x}} =
60+
\int_{\Gamma_{\mathrm{N}}} {\boldsymbol{t}}\cdot\delta\boldsymbol{u}\mathrm{d}{\boldsymbol{s}}
61+
$$
62+
63+
with a test function $\delta \boldsymbol u$

0 commit comments

Comments
 (0)