1
1
# Infinite linear elastic plate with hole
2
2
3
- We consider the case of an infinite plate with a circular hole in the center. The plate is subjected to uniform tensile load at infinity. The analytical solution for the stress field has been derived by Kirsch in 1898 [ @Kirsch1898 ] .
3
+ We consider the case of an infinite plate with a circular hole in the center. The plate is subjected to uniform tensile load $p$ at infinity. The analytical solution for the stress field has been derived by Kirsch in 1898 [ @Kirsch1898 ] .
4
4
<!-- include an svg picture here-->
5
5
![ Infinite linear elastic plate with hole] ( plate-with-hole.svg )
6
6
7
- The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction, then at
7
+ The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction with load $p$ , then at
8
8
a point with polar coordinates $(r,\theta)\in\mathbb R_ + \times \mathbb R$, the polar stress components are given by
9
9
10
10
$$
11
11
\begin{aligned}
12
- \sigma_r &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
13
- \sigma_\theta &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
14
- \sigma_{r\theta} &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
12
+ \sigma_{rr}(r,\theta) &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
13
+ \sigma_{ \theta\theta}(r,\theta) &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
14
+ \sigma_{r\theta}(r,\theta) &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
15
15
\end{aligned}
16
16
$$
17
17
18
- * What is $p$
19
- * What are $E,\nu$
20
- * Cartesian coordiantes
21
- * Neumann BCs
22
- * write Dirichlet with set
18
+ In order to write the stresses in a cartesian coordiante system, they need to be rotated by $\theta$, which results in
19
+
20
+ $$
21
+ \begin{aligned}
22
+ \sigma_{xx} (r,\theta) &= \frac{3 a^{4} p \cos{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(1.5 \cos{\left(2 \theta \right)} + \cos{\left(4 \theta \right)}\right)}{r^{2}} + p \\
23
+ \sigma_{yy} (r,\theta)&= - \frac{3 a^{4} p \cos{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(\frac{\cos{\left(2 \theta \right)}}{2} - \cos{\left(4 \theta \right)}\right)}{r^{2}}\\
24
+ \sigma_{xy} (r,\theta) &= \frac{3 a^{4} p \sin{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(\frac{\sin{\left(2 \theta \right)}}{2} + \sin{\left(4 \theta \right)}\right)}{r^{2}}
25
+ \end{aligned}
26
+ $$
27
+
28
+ with the full stress tensor solution given by
29
+
30
+ $$
31
+ \boldsymbol\sigma_\mathrm{analytical} (r,\theta)= \begin{bmatrix} \sigma_{xx} & \sigma_{xy}\\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}.
32
+ $$
33
+
34
+ or for a cartesion point $(x,y)$:
35
+
36
+ $$
37
+ \boldsymbol\sigma_\mathrm{analytical} (x,y)=\boldsymbol\sigma_\mathrm{analytical} \left(\sqrt{x^2 + y^2},\arccos\frac{x}{\sqrt{x^2+y^2}}\right)
38
+ $$
23
39
24
40
In order to transform this into a practical benchmark, we consider a rectangular subdomain
25
41
of the infinite plate around the hole. The boundary conditions of the subdomain are determined
@@ -28,10 +44,20 @@ of the rectangular domain and assuming symmetry conditions at the edges. Let $\O
28
44
29
45
$$
30
46
\begin{aligned}
31
- \mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \boldsymbol u \in \Omega & \\
47
+ \mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \text{ on } \Omega & \\
32
48
\boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
33
49
\boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
34
- \boldsymbol u_y &=0 & y=0& \text{Dirichlet BC}\\
35
- \boldsymbol u_x &=0 & x=0& \text{Dirichlet BC}\\
50
+ \boldsymbol u_y &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | y=0\rbrace& \text{ Dirichlet BC}\\
51
+ \boldsymbol u_x &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | x=0\rbrace& \text{ Dirichlet BC}\\
52
+ \boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n&\text{ on }\lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace& \text{ Neumann BC}
36
53
\end{aligned}
37
54
$$
55
+
56
+ The weak form is
57
+
58
+ $$
59
+ \int_{\Omega} \boldsymbol\varepsilon(\delta\boldsymbol{u}) : \boldsymbol{\sigma} \mathrm{d}{\boldsymbol{x}} =
60
+ \int_{\Gamma_{\mathrm{N}}} {\boldsymbol{t}}\cdot\delta\boldsymbol{u}\mathrm{d}{\boldsymbol{s}}
61
+ $$
62
+
63
+ with a test function $\delta \boldsymbol u$
0 commit comments