|
39 | 39 | In order to transform this into a practical benchmark, we consider a rectangular subdomain
|
40 | 40 | of the infinite plate around the hole. The boundary conditions of the subdomain are determined
|
41 | 41 | from the analytical solution. The example is further reduced by only simulating one quarter
|
42 |
| -of the rectangular domain and assuming symmetry conditions at the edges. Let $\Omega =[0,l]^2 \setminus \left \lbrace (x,y) \mid \sqrt{x^2+y^2}<a \right \rbrace$ be the domain of the benchmark example, then the PDE is given by |
| 42 | +of the rectangular domain and assuming symmetry conditions at the edges. Let |
| 43 | + |
| 44 | +$$ |
| 45 | +\Omega =[0,l]^2 \setminus \lbrace (x,y) \mid \sqrt{x^2+y^2}<a \rbrace |
| 46 | +$$ |
| 47 | + |
| 48 | +be the domain of the benchmark example and |
| 49 | + |
| 50 | +$$ |
| 51 | +\begin{aligned} |
| 52 | +\Gamma_\mathrm{D_1} &= \lbrace (x,y)\in \partial\Omega | y=0\rbrace \\ |
| 53 | +\Gamma_\mathrm{D_2} &= \lbrace (x,y)\in \partial\Omega | x=0\rbrace \\ |
| 54 | +\Gamma_\mathrm{N} &= \lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace |
| 55 | +\end{aligned} |
| 56 | +$$ |
| 57 | + |
| 58 | +then the PDE is given by |
43 | 59 |
|
44 | 60 | $$
|
45 | 61 | \begin{aligned}
|
46 | 62 | \mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \text{ on } \Omega & \\
|
47 | 63 | \boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
|
48 | 64 | \boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
|
49 |
| -\boldsymbol u_y &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | y=0\rbrace& \text{ Dirichlet BC}\\ |
50 |
| -\boldsymbol u_x &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | x=0\rbrace& \text{ Dirichlet BC}\\ |
51 |
| -\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n&\text{ on }\Gamma_{\mathrm{N}}=\lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace& \text{ Neumann BC} |
| 65 | +\boldsymbol u_y &=0 & \text{ on } \Gamma_\mathrm{D_1}& \text{ Dirichlet BC}\\ |
| 66 | +\boldsymbol u_x &=0 & \text{ on } \Gamma_\mathrm{D_2}& \text{ Dirichlet BC}\\ |
| 67 | +\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n & \text{ on } \Gamma_\mathrm{N} & \text{ Neumann BC}\\ |
52 | 68 | \end{aligned}
|
53 | 69 | $$
|
54 | 70 |
|
|
0 commit comments