Skip to content

Commit 9cc9731

Browse files
authored
Update plate-with-hole.md
1 parent 695d3a2 commit 9cc9731

File tree

1 file changed

+20
-4
lines changed

1 file changed

+20
-4
lines changed

docs/benchmarks/linear elasticity/plate-with-hole.md

Lines changed: 20 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -39,16 +39,32 @@ $$
3939
In order to transform this into a practical benchmark, we consider a rectangular subdomain
4040
of the infinite plate around the hole. The boundary conditions of the subdomain are determined
4141
from the analytical solution. The example is further reduced by only simulating one quarter
42-
of the rectangular domain and assuming symmetry conditions at the edges. Let $\Omega =[0,l]^2 \setminus \left \lbrace (x,y) \mid \sqrt{x^2+y^2}<a \right \rbrace$ be the domain of the benchmark example, then the PDE is given by
42+
of the rectangular domain and assuming symmetry conditions at the edges. Let
43+
44+
$$
45+
\Omega =[0,l]^2 \setminus \lbrace (x,y) \mid \sqrt{x^2+y^2}<a \rbrace
46+
$$
47+
48+
be the domain of the benchmark example and
49+
50+
$$
51+
\begin{aligned}
52+
\Gamma_\mathrm{D_1} &= \lbrace (x,y)\in \partial\Omega | y=0\rbrace \\
53+
\Gamma_\mathrm{D_2} &= \lbrace (x,y)\in \partial\Omega | x=0\rbrace \\
54+
\Gamma_\mathrm{N} &= \lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace
55+
\end{aligned}
56+
$$
57+
58+
then the PDE is given by
4359

4460
$$
4561
\begin{aligned}
4662
\mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \text{ on } \Omega & \\
4763
\boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
4864
\boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
49-
\boldsymbol u_y &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | y=0\rbrace& \text{ Dirichlet BC}\\
50-
\boldsymbol u_x &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | x=0\rbrace& \text{ Dirichlet BC}\\
51-
\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n&\text{ on }\Gamma_{\mathrm{N}}=\lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace& \text{ Neumann BC}
65+
\boldsymbol u_y &=0 & \text{ on } \Gamma_\mathrm{D_1}& \text{ Dirichlet BC}\\
66+
\boldsymbol u_x &=0 & \text{ on } \Gamma_\mathrm{D_2}& \text{ Dirichlet BC}\\
67+
\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n & \text{ on } \Gamma_\mathrm{N} & \text{ Neumann BC}\\
5268
\end{aligned}
5369
$$
5470

0 commit comments

Comments
 (0)