Skip to content

Commit d5d4f55

Browse files
committed
Start benchmark description
1 parent 1dded98 commit d5d4f55

File tree

3 files changed

+321
-0
lines changed

3 files changed

+321
-0
lines changed
Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
# Infinite linear elastic plate with hole
2+
3+
We consider the case of an infinite plate with a circular hole in the center. The plate is subjected to uniform tensile load at infinity. The analytical solution for the stress field has been derived by Kirsch in 1898 [@Kirsch1898].
4+
<!-- include an svg picture here-->
5+
![Infinite linear elastic plate with hole](plate-with-hole.svg)
6+
7+
The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction, then at
8+
a point with polar coordinates $(r,\theta)\in\mathbb R_+ \times \mathbb R$, the polar stress components are given by
9+
10+
\[
11+
\begin{aligned}
12+
\sigma_r &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
13+
\sigma_\theta &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
14+
\sigma_{r\theta} &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
15+
\end{aligned}
16+
\]
17+
In order to transform this into a practical benchmark, we consider a rectangular subdomain
18+
of the infinite plate around the hole. The boundary conditions of the subdomain are determined
19+
from the analytical solution. The example is further reduced by only simulating one quarter
20+
of the rectangular domain and assuming symmetry conditions at the edges. Let $\Omega =[0,l]^2 \setminus\left\{(x,y) \mid \sqrt{x^2+y^2}<a \right\}$ be the domain of the benchmark example, then the PDE is given by
21+
22+
\[
23+
\begin{aligned}
24+
\mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \boldsymbol u \in \Omega & \\
25+
\boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
26+
\boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
27+
\boldsymbol u_y &=0 & y=0& \text{Dirichlet BC}\\
28+
\boldsymbol u_x &=0 & x=0& \text{Dirichlet BC}\\
29+
boldsymbol{n}
30+
\end{aligned}
31+
\]
Lines changed: 282 additions & 0 deletions
Loading

docs/literature.bib

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -19,4 +19,12 @@ @Book{Simo1998
1919
language = {en},
2020
url = {https://www.springer.com/gp/book/9780387975207},
2121
urldate = {2020-06-23},
22+
}
23+
@article{Kirsch1898,
24+
title={Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre},
25+
author={Kirsch, Ernst Gustav},
26+
journal={Zeitshrift des Vereines deutscher Ingenieure},
27+
volume={42},
28+
pages={797--807},
29+
year={1898}
2230
}

0 commit comments

Comments
 (0)