Skip to content

Commit 019df2a

Browse files
deploy: bdab5a6
1 parent 196b599 commit 019df2a

File tree

4 files changed

+4
-4
lines changed

4 files changed

+4
-4
lines changed

project/bbdc2/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
<!doctype html><html lang=en-us><head><meta charset=utf-8><meta name=viewport content="width=device-width,initial-scale=1"><meta http-equiv=x-ua-compatible content="IE=edge"><meta name=generator content="Wowchemy 5.0.0-beta.2 for Hugo"><meta name=author content="DFKI-NLP"><meta name=description content="In order to optimally prepare industry, science and the society in Germany and Europe for the global Big Data trend, highly coordinated activities in research, teaching, and technology transfer regarding the integration of data analysis methods and scalable data processing are required. To achieve this, the Berlin Big Data Center is pursuing the following seven objectives: 1) Pooling expertise in scalable data management, data analytics, and big data application 2) Conducting fundamental research to develop novel and automatically scalable technologies capable of performing 'Deep Analysis' of 'Big Data'. 3) Developing an integrated, declarative, highly scalable open-source system that enables the specification, automatic optimization, parallelization and hardware adaptation, and fault-tolerant, efficient execution of advanced data analysis problems, using varying methods (e.g., drawn from machine learning, linear algebra, statistics and probability theory, computational linguistics, or signal processing), leveraging our work on Apache Flink 4) Transfering technology and know-how to support innovation in companies and startups. 5) Educating data scientists with respect to the five big data dimensions (i.e., applications, economic, legal, social, and technological) via leading educational programs. 6) Empowering people to leverage 'Smart Data', i.e., to discover newfound information based on their massive data sets. 7)Enabling the general public to conduct sound data-driven decision-making."><link rel=alternate hreflang=en-us href=https://dfki-nlp.github.io/project/bbdc2/><link rel=preconnect href=https://fonts.gstatic.com crossorigin><meta name=theme-color content="#3f51b5"><script src=../../js/mathjax-config.js></script><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/academicons/1.9.0/css/academicons.min.css integrity="sha512-W4yqoT1+8NLkinBLBZko+dFB2ZbHsYLDdr50VElllRcNt2Q4/GSs6u71UHKxB7S6JEMCp5Ve4xjh3eGQl/HRvg==" crossorigin=anonymous><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.14.0/css/all.min.css integrity="sha256-FMvZuGapsJLjouA6k7Eo2lusoAX9i0ShlWFG6qt7SLc=" crossorigin=anonymous><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/fancybox/3.5.7/jquery.fancybox.min.css integrity="sha256-Vzbj7sDDS/woiFS3uNKo8eIuni59rjyNGtXfstRzStA=" crossorigin=anonymous media=print onload="this.media='all'"><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.2.0/styles/github.min.css crossorigin=anonymous title=hl-light media=print onload="this.media='all'"><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.2.0/styles/dracula.min.css crossorigin=anonymous title=hl-dark media=print onload="this.media='all'" disabled><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.7.1/leaflet.min.css integrity="sha512-1xoFisiGdy9nvho8EgXuXvnpR5GAMSjFwp40gSRE3NwdUdIMIKuPa7bqoUhLD0O/5tPNhteAsE5XyyMi5reQVA==" crossorigin=anonymous media=print onload="this.media='all'"><script src=https://cdnjs.cloudflare.com/ajax/libs/lazysizes/5.2.2/lazysizes.min.js integrity="sha512-TmDwFLhg3UA4ZG0Eb4MIyT1O1Mb+Oww5kFG0uHqXsdbyZz9DcvYQhKpGgNkamAI6h2lGGZq2X8ftOJvF/XjTUg==" crossorigin=anonymous async></script><script src=https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js integrity crossorigin=anonymous async></script><link rel=preload as=style href="https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Roboto+Mono&family=Roboto:wght@400;700&display=swap"><link rel=stylesheet href="https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Roboto+Mono&family=Roboto:wght@400;700&display=swap" media=print onload="this.media='all'"><link rel=stylesheet href=../../css/wowchemy.0abaadd3907f09eb28431199a31e5765.css><link rel=manifest href=../../index.webmanifest><link rel=icon type=image/png href=../../images/icon_hu15d4cd24fad375030c8e4d8f45deb950_164099_32x32_fill_lanczos_center_2.png><link rel=apple-touch-icon type=image/png href=../../images/icon_hu15d4cd24fad375030c8e4d8f45deb950_164099_180x180_fill_lanczos_center_2.png><link rel=canonical href=https://dfki-nlp.github.io/project/bbdc2/><meta property="twitter:card" content="summary_large_image"><meta property="og:site_name" content="DFKI-NLP"><meta property="og:url" content="https://dfki-nlp.github.io/project/bbdc2/"><meta property="og:title" content="BBDC2 | DFKI-NLP"><meta property="og:description" content="In order to optimally prepare industry, science and the society in Germany and Europe for the global Big Data trend, highly coordinated activities in research, teaching, and technology transfer regarding the integration of data analysis methods and scalable data processing are required. To achieve this, the Berlin Big Data Center is pursuing the following seven objectives: 1) Pooling expertise in scalable data management, data analytics, and big data application 2) Conducting fundamental research to develop novel and automatically scalable technologies capable of performing 'Deep Analysis' of 'Big Data'. 3) Developing an integrated, declarative, highly scalable open-source system that enables the specification, automatic optimization, parallelization and hardware adaptation, and fault-tolerant, efficient execution of advanced data analysis problems, using varying methods (e.g., drawn from machine learning, linear algebra, statistics and probability theory, computational linguistics, or signal processing), leveraging our work on Apache Flink 4) Transfering technology and know-how to support innovation in companies and startups. 5) Educating data scientists with respect to the five big data dimensions (i.e., applications, economic, legal, social, and technological) via leading educational programs. 6) Empowering people to leverage 'Smart Data', i.e., to discover newfound information based on their massive data sets. 7)Enabling the general public to conduct sound data-driven decision-making."><meta property="og:image" content="https://dfki-nlp.github.io/project/bbdc2/featured.png"><meta property="twitter:image" content="https://dfki-nlp.github.io/project/bbdc2/featured.png"><meta property="og:locale" content="en-us"><meta property="article:published_time" content="2021-02-23T11:16:31+01:00"><meta property="article:modified_time" content="2021-02-23T11:16:31+01:00"><script type=application/ld+json>{"@context":"https://schema.org","@type":"Article","mainEntityOfPage":{"@type":"WebPage","@id":"https://dfki-nlp.github.io/project/bbdc2/"},"headline":"BBDC2","image":["https://dfki-nlp.github.io/project/bbdc2/featured.png"],"datePublished":"2021-02-23T11:16:31+01:00","dateModified":"2021-02-23T11:16:31+01:00","author":{"@type":"Person","name":"Leonhard Hennig"},"publisher":{"@type":"Organization","name":"DFKI-NLP","logo":{"@type":"ImageObject","url":"https://dfki-nlp.github.io/images/icon_hu15d4cd24fad375030c8e4d8f45deb950_164099_192x192_fill_lanczos_center_2.png"}},"description":"In order to optimally prepare industry, science and the society in Germany and Europe for the global Big Data trend, highly coordinated activities in research, teaching, and technology transfer regarding the integration of data analysis methods and scalable data processing are required. To achieve this, the Berlin Big Data Center is pursuing the following seven objectives: 1) Pooling expertise in scalable data management, data analytics, and big data application 2) Conducting fundamental research to develop novel and automatically scalable technologies capable of performing 'Deep Analysis' of 'Big Data'. 3) Developing an integrated, declarative, highly scalable open-source system that enables the specification, automatic optimization, parallelization and hardware adaptation, and fault-tolerant, efficient execution of advanced data analysis problems, using varying methods (e.g., drawn from machine learning, linear algebra, statistics and probability theory, computational linguistics, or signal processing), leveraging our work on Apache Flink 4) Transfering technology and know-how to support innovation in companies and startups. 5) Educating data scientists with respect to the five big data dimensions (i.e., applications, economic, legal, social, and technological) via leading educational programs. 6) Empowering people to leverage 'Smart Data', i.e., to discover newfound information based on their massive data sets. 7)Enabling the general public to conduct sound data-driven decision-making."}</script><script src=https://cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.1/cookieconsent.min.js integrity="sha256-5VhCqFam2Cn+yjw61zbBNrbHVJ6SRydPeKopYlngbiQ=" crossorigin=anonymous></script><link rel=stylesheet href=https://cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.1/cookieconsent.min.css integrity="sha256-zQ0LblD/Af8vOppw18+2anxsuaz3pWYyVWi+bTvTH8Q=" crossorigin=anonymous><script>window.addEventListener("load",function(){window.cookieconsent.initialise({palette:{popup:{background:"#3f51b5",text:"rgb(255, 255, 255)"},button:{background:"rgb(255, 255, 255)",text:"#3f51b5"}},theme:"classic",content:{message:"This website uses cookies to ensure you get the best experience on our website.",dismiss:"Got it!",link:"Learn more",href:"/privacy/"}})})</script><title>BBDC2 | DFKI-NLP</title></head><body id=top data-spy=scroll data-offset=70 data-target=#TableOfContents class=page-wrapper><script src=../../js/wowchemy-init.min.2e458e5393490f06d99da74a463a188b.js></script><aside class=search-modal id=search><div class=container><section class=search-header><div class="row no-gutters justify-content-between mb-3"><div class=col-6><h1>Search</h1></div><div class="col-6 col-search-close"><a class=js-search href=# aria-label=Close><i class="fas fa-times-circle text-muted" aria-hidden=true></i></a></div></div><div id=search-box><input name=q id=search-query placeholder=Search... autocapitalize=off autocomplete=off autocorrect=off spellcheck=false type=search class=form-control aria-label=Search...></div></section><section class=section-search-results><div id=search-hits></div></section></div></aside><div class=page-header><nav class="navbar navbar-expand-lg navbar-light compensate-for-scrollbar" id=navbar-main><div class=container-xl><div class="d-none d-lg-inline-flex"><a class=navbar-brand href=../../>DFKI-NLP</a></div><button type=button class=navbar-toggler data-toggle=collapse data-target=#navbar-content aria-controls=navbar aria-expanded=false aria-label="Toggle navigation">
22
<span><i class="fas fa-bars"></i></span></button><div class="navbar-brand-mobile-wrapper d-inline-flex d-lg-none"><a class=navbar-brand href=../../>DFKI-NLP</a></div><div class="navbar-collapse main-menu-item collapse justify-content-end" id=navbar-content><ul class="navbar-nav d-md-inline-flex"><li class=nav-item><a class=nav-link href=../../#about><span>Home</span></a></li><li class=nav-item><a class=nav-link href=../../#news><span>News</span></a></li><li class=nav-item><a class=nav-link href=../../#people><span>People</span></a></li><li class=nav-item><a class=nav-link href=../../#publications><span>Publications</span></a></li><li class=nav-item><a class=nav-link href=../../#projects><span>Projects</span></a></li><li class=nav-item><a class=nav-link href=../../#datasets><span>Datasets</span></a></li><li class=nav-item><a class=nav-link href=../../#contact><span>Contact</span></a></li></ul></div><ul class="nav-icons navbar-nav flex-row ml-auto d-flex pl-md-2"><li class=nav-item><a class="nav-link js-search" href=# aria-label=Search><i class="fas fa-search" aria-hidden=true></i></a></li><li class="nav-item dropdown theme-dropdown"><a href=# class=nav-link data-toggle=dropdown aria-haspopup=true aria-label="Display preferences"><i class="fas fa-moon" aria-hidden=true></i></a><div class=dropdown-menu><a href=# class="dropdown-item js-set-theme-light"><span>Light</span></a>
33
<a href=# class="dropdown-item js-set-theme-dark"><span>Dark</span></a>
4-
<a href=# class="dropdown-item js-set-theme-auto"><span>Automatic</span></a></div></li></ul></div></nav></div><div class=page-body><article class="article article-project"><div class="article-container pt-3"><h1>BBDC2</h1><div class=article-metadata><div><span><a href=../../authors/leonhard-hennig/>Leonhard Hennig</a></span></div><span class=article-date>Feb 23, 2021</span></div><div class="btn-links mb-3"><a class="btn btn-outline-primary my-1" href=https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/bbdcii target=_blank rel=noopener>Go to Project Site</a></div></div><div class="article-header article-container featured-image-wrapper mt-4 mb-4" style=max-width:207px;max-height:79px><div style=position:relative><img src=../../project/bbdc2/featured.png alt class=featured-image></div></div><div class=article-container><div class=article-style></div><div class=article-tags><a class="badge badge-light" href=../../tag/information-extraction/>Information Extraction</a></div><div class="media author-card content-widget-hr"><a href=../../authors/leonhard-hennig/><img class="avatar mr-3 avatar-circle" src=../../authors/leonhard-hennig/avatar_hu0bd7dae612fe545036f91d2e2e11a312_931324_270x270_fill_lanczos_center_2.png alt="Leonhard Hennig"></a><div class=media-body><h5 class=card-title><a href=../../authors/leonhard-hennig/>Leonhard Hennig</a></h5><h6 class=card-subtitle>Senior Researcher</h6><ul class=network-icon aria-hidden=true><li><a href=mailto:leonhard.hennig@dfki.de><i class="fas fa-envelope"></i></a></li><li><a href="https://scholar.google.com/citations?user=V9G-FOoAAAAJ" target=_blank rel=noopener><i class="ai ai-google-scholar"></i></a></li><li><a href=https://github.com/leonhardhennig target=_blank rel=noopener><i class="fab fa-github"></i></a></li></ul></div></div><div class="article-widget content-widget-hr"><h3>Related</h3><ul><li><a href=../../project/data4transparency/>Data4Transparency</a></li><li><a href=../../project/text2tech/>Text2Tech</a></li><li><a href=../../project/bifold/>BIFOLD</a></li><li><a href=../../project/cora4nlp/>Cora4NLP</a></li><li><a href=../../project/plass/>PLASS</a></li></ul></div><div class="project-related-pages content-widget-hr"><h2>Publications</h2><div class="media stream-item"><div class=media-body><div class="section-subheading article-title mb-0 mt-0"><a href=../../publication/acl-srw2020-harbecke-considering/>Considering Likelihood in NLP Classification Explanations with Occlusion and Language Modeling</a></div><a href=../../publication/acl-srw2020-harbecke-considering/ class=summary-link><div class=article-style>Recently, state-of-the-art NLP models gained an increasing syntactic and semantic understanding of language, and explanation methods …</div></a><div class="stream-meta article-metadata"><div><span><a href=../../authors/david-harbecke/>David Harbecke</a></span>, <span><a href=../../authors/christoph-alt/>Christoph Alt</a></span></div></div><div class=btn-links><a class="btn btn-outline-primary btn-page-header btn-sm" href=https://www.aclweb.org/anthology/2020.acl-srw.16.pdf target=_blank rel=noopener>PDF</a>
4+
<a href=# class="dropdown-item js-set-theme-auto"><span>Automatic</span></a></div></li></ul></div></nav></div><div class=page-body><article class="article article-project"><div class="article-container pt-3"><h1>BBDC2</h1><div class=article-metadata><div><span><a href=../../authors/leonhard-hennig/>Leonhard Hennig</a></span></div><span class=article-date>Feb 23, 2021</span></div><div class="btn-links mb-3"><a class="btn btn-outline-primary my-1" href=https://www.dfki.de/en/web/research/projects-and-publications/projects-overview/project/bbdcii target=_blank rel=noopener>Go to Project Site</a></div></div><div class="article-header article-container featured-image-wrapper mt-4 mb-4" style=max-width:207px;max-height:79px><div style=position:relative><img src=../../project/bbdc2/featured.png alt class=featured-image></div></div><div class=article-container><div class=article-style></div><div class=article-tags><a class="badge badge-light" href=../../tag/information-extraction/>Information Extraction</a></div><div class="media author-card content-widget-hr"><a href=../../authors/leonhard-hennig/><img class="avatar mr-3 avatar-circle" src=../../authors/leonhard-hennig/avatar_hu0bd7dae612fe545036f91d2e2e11a312_931324_270x270_fill_lanczos_center_2.png alt="Leonhard Hennig"></a><div class=media-body><h5 class=card-title><a href=../../authors/leonhard-hennig/>Leonhard Hennig</a></h5><h6 class=card-subtitle>Senior Researcher</h6><ul class=network-icon aria-hidden=true><li><a href=mailto:leonhard.hennig@dfki.de><i class="fas fa-envelope"></i></a></li><li><a href="https://scholar.google.com/citations?user=V9G-FOoAAAAJ" target=_blank rel=noopener><i class="ai ai-google-scholar"></i></a></li><li><a href=https://github.com/leonhardhennig target=_blank rel=noopener><i class="fab fa-github"></i></a></li></ul></div></div><div class="article-widget content-widget-hr"><h3>Related</h3><ul><li><a href=../../project/data4transparency/>Data4Transparency</a></li><li><a href=../../project/text2tech/>Text2Tech</a></li><li><a href=../../project/bifold/>BIFOLD</a></li><li><a href=../../project/cora4nlp/>Cora4NLP</a></li><li><a href=../../project/sim3s/>SIM3S</a></li></ul></div><div class="project-related-pages content-widget-hr"><h2>Publications</h2><div class="media stream-item"><div class=media-body><div class="section-subheading article-title mb-0 mt-0"><a href=../../publication/acl-srw2020-harbecke-considering/>Considering Likelihood in NLP Classification Explanations with Occlusion and Language Modeling</a></div><a href=../../publication/acl-srw2020-harbecke-considering/ class=summary-link><div class=article-style>Recently, state-of-the-art NLP models gained an increasing syntactic and semantic understanding of language, and explanation methods …</div></a><div class="stream-meta article-metadata"><div><span><a href=../../authors/david-harbecke/>David Harbecke</a></span>, <span><a href=../../authors/christoph-alt/>Christoph Alt</a></span></div></div><div class=btn-links><a class="btn btn-outline-primary btn-page-header btn-sm" href=https://www.aclweb.org/anthology/2020.acl-srw.16.pdf target=_blank rel=noopener>PDF</a>
55
<a href=# class="btn btn-outline-primary btn-page-header btn-sm js-cite-modal" data-filename=/publication/acl-srw2020-harbecke-considering/cite.bib>Cite</a>
66
<a class="btn btn-outline-primary btn-page-header btn-sm" href=../../project/bbdc2/>Project</a>
77
<a class="btn btn-outline-primary btn-page-header btn-sm" href=https://doi.org/10.18653/v1/2020.acl-srw.16 target=_blank rel=noopener>DOI</a></div></div><div class=ml-3></div></div><div class="media stream-item"><div class=media-body><div class="section-subheading article-title mb-0 mt-0"><a href=../../publication/acl2020-alt-probing/>Probing Linguistic Features of Sentence-Level Representations in Neural Relation Extraction</a></div><a href=../../publication/acl2020-alt-probing/ class=summary-link><div class=article-style>Despite the recent progress, little is known about the features captured by state-of-the-art neural relation extraction (RE) models. …</div></a><div class="stream-meta article-metadata"><div><span><a href=../../authors/christoph-alt/>Christoph Alt</a></span>, <span><a href=../../authors/aleksandra-gabryszak/>Aleksandra Gabryszak</a></span>, <span><a href=../../authors/leonhard-hennig/>Leonhard Hennig</a></span></div></div><div class=btn-links><a class="btn btn-outline-primary btn-page-header btn-sm" href=https://www.aclweb.org/anthology/2020.acl-main.140.pdf target=_blank rel=noopener>PDF</a>

0 commit comments

Comments
 (0)