|
1 | 1 | # This code is a part of X-ray: Generate and Analyse (XGA), a module designed for the XMM Cluster Survey (XCS).
|
2 |
| -# Last modified by David J Turner (turne540@msu.edu) 29/07/2024, 21:58. Copyright (c) The Contributors |
| 2 | +# Last modified by David J Turner (turne540@msu.edu) 15/08/2025, 13:36. Copyright (c) The Contributors |
3 | 3 |
|
4 | 4 | import inspect
|
5 | 5 | from types import FunctionType
|
@@ -89,6 +89,94 @@ def convert_to_odr_compatible(model_func: FunctionType, new_par_name: str = 'β'
|
89 | 89 | return new_model_func
|
90 | 90 |
|
91 | 91 |
|
| 92 | +def derivative(func: FunctionType, x0: float, dx: float = 1.0, n: int = 1, args: tuple= (), order: int = 3): |
| 93 | + """ |
| 94 | + Find the nth derivative of a function at a point. |
| 95 | +
|
| 96 | + Given a function, use a central difference formula with spacing `dx` to |
| 97 | + compute the nth derivative at `x0`. |
| 98 | +
|
| 99 | + This is intended as a drop-in replacement for Scipy's misc.derivative function, which was deprecated in |
| 100 | + Scipy v1.10.0 and removed after Scipy v1.14.1. It has been directly copied/reconstructed from Scipy code. |
| 101 | +
|
| 102 | + :param FunctionType func: Input function |
| 103 | + :param x0: The point at which the nth derivative is found. |
| 104 | + :param dx: Spacing. |
| 105 | + :param n: Order of the derivative. Default is 1. |
| 106 | + :param args: Arguments |
| 107 | + :param order: Number of points to use, must be odd. |
| 108 | + """ |
| 109 | + |
| 110 | + def _central_diff_weights(Np, ndiv=1): |
| 111 | + """ |
| 112 | + Return weights for an Np-point central derivative. |
| 113 | +
|
| 114 | + Assumes equally-spaced function points. |
| 115 | +
|
| 116 | + If weights are in the vector w, then |
| 117 | + derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx) |
| 118 | + """ |
| 119 | + |
| 120 | + if Np < ndiv + 1: |
| 121 | + raise ValueError( |
| 122 | + "Number of points must be at least the derivative order + 1." |
| 123 | + ) |
| 124 | + if Np % 2 == 0: |
| 125 | + raise ValueError("The number of points must be odd.") |
| 126 | + |
| 127 | + ho = Np >> 1 |
| 128 | + x = np.arange(-ho, ho + 1.0) |
| 129 | + x = x[:, np.newaxis] |
| 130 | + X = x ** 0.0 |
| 131 | + for k in range(1, Np): |
| 132 | + X = np.hstack([X, x ** k]) |
| 133 | + w = np.prod(np.arange(1, ndiv + 1), axis=0) * np.linalg.inv(X)[ndiv] |
| 134 | + return w |
| 135 | + |
| 136 | + if order < n + 1: |
| 137 | + raise ValueError( |
| 138 | + "'order' (the number of points used to compute the derivative), " |
| 139 | + "must be at least the derivative order 'n' + 1." |
| 140 | + ) |
| 141 | + if order % 2 == 0: |
| 142 | + raise ValueError( |
| 143 | + "'order' (the number of points used to compute the derivative) " |
| 144 | + "must be odd." |
| 145 | + ) |
| 146 | + # pre-computed for n=1 and 2 and low-order for speed. |
| 147 | + if n == 1: |
| 148 | + if order == 3: |
| 149 | + weights = np.array([-1, 0, 1]) / 2.0 |
| 150 | + elif order == 5: |
| 151 | + weights = np.array([1, -8, 0, 8, -1]) / 12.0 |
| 152 | + elif order == 7: |
| 153 | + weights = np.array([-1, 9, -45, 0, 45, -9, 1]) / 60.0 |
| 154 | + elif order == 9: |
| 155 | + weights = np.array([3, -32, 168, -672, 0, 672, -168, 32, -3]) / 840.0 |
| 156 | + else: |
| 157 | + weights = _central_diff_weights(order, 1) |
| 158 | + elif n == 2: |
| 159 | + if order == 3: |
| 160 | + weights = np.array([1, -2.0, 1]) |
| 161 | + elif order == 5: |
| 162 | + weights = np.array([-1, 16, -30, 16, -1]) / 12.0 |
| 163 | + elif order == 7: |
| 164 | + weights = np.array([2, -27, 270, -490, 270, -27, 2]) / 180.0 |
| 165 | + elif order == 9: |
| 166 | + weights = ( |
| 167 | + np.array([-9, 128, -1008, 8064, -14350, 8064, -1008, 128, -9]) |
| 168 | + / 5040.0 |
| 169 | + ) |
| 170 | + else: |
| 171 | + weights = _central_diff_weights(order, 2) |
| 172 | + else: |
| 173 | + weights = _central_diff_weights(order, n) |
| 174 | + val = 0.0 |
| 175 | + ho = order >> 1 |
| 176 | + for k in range(order): |
| 177 | + val += weights[k] * func(x0 + (k - ho) * dx, *args) |
| 178 | + return val / np.prod((dx,) * n, axis=0) |
| 179 | + |
92 | 180 |
|
93 | 181 |
|
94 | 182 |
|
0 commit comments