Skip to content

Commit eab623e

Browse files
authored
Update README.md
1 parent 8766d7c commit eab623e

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,7 @@ contains `schnet`,`painn`,`filedschnet`,`so3net`
177177
<br>DeepMoleNet is a deep learning package for molecular properties prediction.
178178
- [AirNet](https://github.com/helloyesterday/AirNet)
179179
<br>A new GNN-based deep molecular model by MindSpore.
180-
- [TorchMD-Net](https://github.com/torchmd/torchmd-net)
180+
- [TorchMD-Net](https://github.com/torchmd/torchmd-net)
181181
<br>TorchMD-NET provides graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials.
182182
- [AQML](https://github.com/binghuang2018/aqml)
183183
<br>AQML is a mixed Python/Fortran/C++ package, intends to simulate quantum chemistry problems through the use of the fundamental building blocks of larger systems.
@@ -356,7 +356,7 @@ By combining recent deep learning methods with a large and diverse training set
356356
molecular dynamics on new sequences not used during model parametrization.
357357
- [torchmd-protein-thermodynamics](https://github.com/torchmd/torchmd-protein-thermodynamics)
358358
This repository contains code, data and tutarial for reproducing the paper "Machine Learning Coarse-Grained Potentials of Protein Thermodynamics". https://arxiv.org/abs/2212.07492
359-
- [torchmd-exp](https://github.com/compsciencelab/torchmd-exp)
359+
- [torchmd-exp](https://github.com/compsciencelab/torchmd-exp)
360360
This repository contains a method for training a neural network potential for coarse-grained proteins using unsupervised learning
361361
- [AICG](https://github.com/jasonzzj97/AICG)
362362
Learning coarse-grained force fields for fibrogenesis modeling(https://doi.org/10.1016/j.cpc.2023.108964)

0 commit comments

Comments
 (0)