Skip to content

Commit 1ab6b09

Browse files
committed
replaces v --> \upsilon in docs to avoid confussion with \nu [ci-skip]
1 parent 4da7ebe commit 1ab6b09

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

docs/src/modules/barotropicqg.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,11 @@
22

33
This module solves the quasi-geostrophic barotropic vorticity equation on a
44
beta-plane of variable fluid depth $H-h(x,y)$. The flow is obtained through a
5-
streamfunction $\psi$ as $(u,v) = (-\partial_y\psi, \partial_x\psi)$. All flow
5+
streamfunction $\psi$ as $(u,\upsilon) = (-\partial_y\psi, \partial_x\psi)$. All flow
66
fields can be obtained from the quasi-geostrophic potential vorticity (QGPV).
77
Here the QGPV is
88

9-
$$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x v
9+
$$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x \upsilon
1010
- \partial_y u)}_{\text{relative vorticity}} +
1111
\underbrace{\frac{f_0 h}{H}}_{\text{topographic PV}}.$$
1212

@@ -37,4 +37,4 @@ Thus:
3737

3838
$$\mathcal{L} = \beta\frac{\mathrm{i}k_x}{k^2} - \mu - \nu k^{2n_\nu}\ ,$$
3939
$$\mathcal{N}(\widehat{\zeta}) = - \mathrm{i}k_x \mathrm{FFT}(u q)-
40-
\mathrm{i}k_y \mathrm{FFT}(v q)\ .$$
40+
\mathrm{i}k_y \mathrm{FFT}(\upsilon q)\ .$$

docs/src/modules/twodturb.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
# TwoDTurb Module
22

33
This module solves two-dimensional incompressible turbulence. The flow is given
4-
through a streamfunction $\psi$ as $(u,v) = (-\partial_y\psi, \partial_x\psi)$.
4+
through a streamfunction $\psi$ as $(u,\upsilon) = (-\partial_y\psi, \partial_x\psi)$.
55
The dynamical variable used here is the component of the vorticity of the flow
6-
normal to the plane of motion, $q=\partial_x v- \partial_y u = \nabla^2\psi$.
6+
normal to the plane of motion, $q=\partial_x \upsilon- \partial_y u = \nabla^2\psi$.
77
The equation solved by the module is:
88

99
$$\partial_t q + J(\psi, q) = \underbrace{-\left[\mu(-1)^{n_\mu} \nabla^{2n_\mu}
@@ -26,4 +26,4 @@ Thus:
2626

2727
$$\mathcal{L} = -\mu k^{-2n_\mu} - \nu k^{2n_\nu}\ ,$$
2828
$$\mathcal{N}(\widehat{q}) = - \mathrm{i}k_x \mathrm{FFT}(u q)-
29-
\mathrm{i}k_y \mathrm{FFT}(v q)\ .$$
29+
\mathrm{i}k_y \mathrm{FFT}(\upsilon q)\ .$$

0 commit comments

Comments
 (0)