Skip to content

Commit 8b2b6c1

Browse files
committed
simplifies notation in boussinesq doc
1 parent 3523593 commit 8b2b6c1

File tree

3 files changed

+30
-32
lines changed

3 files changed

+30
-32
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Here's an overview of the code structure:
4646
- 4th-order Runge-Kutta (RK4)
4747
- 4th-order Runge-Kutta Exponential Time Differencing (ETDRK4)
4848
- 4th-order Dual Runge-Kutta (DualRK4)
49-
- 4th-order Dual Runge-Kutta Exponential Time Differencing (Dual ETDRK4)
49+
- 4th-order Dual Runge-Kutta Exponential Time Differencing (DualETDRK4)
5050

5151
For each time-stepper exists also a "filtered" version that filters
5252
out high-wavenumber spectral components of the solution. The `Dual`

docs/src/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ Here's an overview of the code structure:
6060
- 4th-order Runge-Kutta (RK4)
6161
- 4th-order Runge-Kutta Exponential Time Differencing (ETDRK4)
6262
- 4th-order Dual Runge-Kutta (DualRK4)
63-
- 4th-order Dual Runge-Kutta Exponential Time Differencing (Dual ETDRK4)
63+
- 4th-order Dual Runge-Kutta Exponential Time Differencing (DualETDRK4)
6464

6565
For each time-stepper exists also a "filtered" version that filters
6666
out high-wavenumber spectral components of the solution. The `Dual`

docs/src/modules/boussinesq.md

Lines changed: 28 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -10,23 +10,23 @@
1010
1111
\newcommand{\bu}{\boldsymbol u}
1212
\newcommand{\bU}{\boldsymbol U}
13-
\newcommand{\buu}{\widehat{\boldsymbol{u}}}
14-
\newcommand{\bb}{\widehat{b}}
15-
\newcommand{\pp}{\widehat{p}}
16-
\newcommand{\ww}{\widehat{w}}
17-
\newcommand{\uu}{\widehat{u}}
13+
\newcommand{\buu}{{\boldsymbol{u}}}
14+
\newcommand{\bb}{{b}}
15+
\newcommand{\pp}{{p}}
16+
\newcommand{\ww}{{w}}
17+
\newcommand{\uu}{{u}}
1818
\newcommand{\v}{\upsilon}
19-
\newcommand{\vv}{\widehat{\upsilon}}
20-
\newcommand{\zzeta}{\widehat{\zeta}}
21-
\newcommand{\oomega}{\widehat{\omega}}
19+
\newcommand{\vv}{{\upsilon}}
20+
\newcommand{\zzeta}{{\zeta}}
21+
\newcommand{\oomega}{{\omega}}
2222
\newcommand{\boomega}{\boldsymbol{\oomega}}
2323
2424
\newcommand{\bxh}{\widehat{\boldsymbol{x}}}
2525
\newcommand{\byh}{\widehat{\boldsymbol{y}}}
2626
\newcommand{\bzh}{\widehat{\boldsymbol{z}}}
2727
\newcommand{\ii}{\mathrm{i}}
2828
\newcommand{\ee}{\mathrm{e}}
29-
\newcommand{\cc}{\mathrm{c}}
29+
\newcommand{\cc}{\mathrm{c.c.}}
3030
\newcommand{\J}{\mathsf{J}}
3131
3232
\newcommand{\p}{\partial}
@@ -43,20 +43,20 @@ two or three modes. Approximations of this last flavor are described here.
4343
The three-dimensional rotating, stratified, hydrostatic Boussinesq equations are
4444

4545
```math
46-
\p_t\buu + \left ( \buu \bcdot \bnabla \right ) \buu + f \bzh \times \buu + \bnabla p = D^{\buu} \com \\
46+
\p_t\buu + \left ( \buu \bcdot \bnabla \right ) \buu + f \bzh \times \buu + \bnabla \pp = D^{\buu} \com \\
4747
\p_z \pp = \bb \com \\
48-
\p_t\bb + \ww N^2 = D^b \com \\
49-
\p_x\uu + \p_y\vv + \p_z\ww = 0 \com
48+
\p_t\bb + \ww N^2 = D^\bb \com \\
49+
\bnabla \bcdot \buu = 0 \com
5050
```
5151

5252
where $\bu = (u, \v, w)$ is the three-dimensional velocity, $b$ is buoyancy, $p$ is pressure, $N^2$ is the
53-
buoyancy frequency (constant), and $f$ is the rotation or Coriolis frequency. The operators $D^{\buu}$ and $D^{\bb}$ are arbitrary dissipation operators which we define only after projecting onto vertical Fourier or Sin/Cos modes.
53+
buoyancy frequency (constant), and $f$ is the rotation or Coriolis frequency. The operators $D^{\buu}$ and $D^{\bb}$ are arbitrary dissipation that we define only after projecting onto vertical Fourier or Sin/Cos modes.
5454
Taking the curl of the horizontal momentum equation yields an evolution
5555
equation for vertical vorticity, $\zzeta = \p_x \vv - \p_y \uu$:
5656

5757
```math
5858
\p_t\zzeta + \buu \bcdot \bnabla \zzeta - \left (f \bzh + \boomega \right )
59-
\bcdot \bnabla \ww = D^{\zeta} \per
59+
\bcdot \bnabla \ww = D^{\zzeta} \per
6060
```
6161

6262
## Vertically Fourier Boussinesq
@@ -65,7 +65,7 @@ The vertically-Fourier Boussinesq module solves the Boussinesq system obtained b
6565
Boussinesq equations in a Fourier series. The horizontal velocity $\uu$, for example, is expanded with
6666

6767
```math
68-
\uu(x, y, z, t) = U(x, y, t) + \ee^{\ii m z} u(x, y, t) + \ee^{-\ii m z} u^*(x, y, t) \com
68+
\uu(x, y, z, t) \mapsto U(x, y, t) + \ee^{\ii m z} u(x, y, t) + \ee^{-\ii m z} u^*(x, y, t) \com
6969
```
7070

7171
The other variables $\vv$, $\bb$, $\pp$, $\zzeta$, and $\boomega$ are expanded identically. The barotropic
@@ -74,7 +74,7 @@ vorticity obeys
7474
```math
7575
\p_t Z + \J \left ( \Psi, Z \right )
7676
+ \bnabla \bcdot \left ( \bu \zeta^* \right ) + \ii m \pnabla \bcdot \left ( \bu w^* \right ) + \cc
77-
= D^{Z} \com
77+
= D_0 Z \com
7878
```
7979

8080
where $\cc$ denotes the complex conjugate and contraction with $\pnabla = -\p_y \bxh + \p_x \byh$
@@ -83,17 +83,16 @@ gives the vertical component of the curl.
8383
The baroclinic components obey
8484

8585
```math
86-
\p_t u - f \v + \p_x p = - \J \left ( \Psi, u \right ) - \bu \bcdot \bnabla U + D^u \com \\
87-
\p_t \v + f u + \p_y p = - \J \left ( \Psi, \v \right ) - \bu \bcdot \bnabla V + D^\v \com \\
88-
\p_t p - \tfrac{N^2}{m} w = - \J \left ( \Psi, p \right ) + D^p \per
86+
\p_t u - f \v + \p_x p = - \J \left ( \Psi, u \right ) - \bu \bcdot \bnabla U + D_1 u \com \\
87+
\p_t \v + f u + \p_y p = - \J \left ( \Psi, \v \right ) - \bu \bcdot \bnabla V + D_1 \v \com \\
88+
\p_t p - \tfrac{N^2}{m} w = - \J \left ( \Psi, p \right ) + D_1 p \per
8989
```
9090

9191
The dissipation operators are defined
9292

9393
```math
94-
D^Z = \nu_0 (-1)^{n_0} \nabla^{2n_0} Z + \mu_0 (-1)^{m_0} \nabla^{2m_0} Z \com \\
95-
D^u = \nu_1 (-1)^{n_1} \nabla^{2n_1} u + \mu_1 (-1)^{m_1} \nabla^{2m_1} u \com \\
96-
D^\v = \nu_1 (-1)^{n_1} \nabla^{2n_1} \v + \mu_1 (-1)^{m_1} \nabla^{2m_1} \v \com
94+
D_0 = \nu_0 (-1)^{n_0} \nabla^{2n_0} + \mu_0 (-1)^{m_0} \nabla^{2m_0} \com \\
95+
D_1 = \nu_1 (-1)^{n_1} \nabla^{2n_1} + \mu_1 (-1)^{m_1} \nabla^{2m_1}
9796
```
9897

9998
where $U$ is the barotropic velocity and $u$ is the amplitude of the first baroclinic mode with periodic
@@ -110,7 +109,7 @@ The vertically-Cosine Boussinesq module solves the Boussinesq system obtained by
110109
hydrostatic Boussinesq equations in a Sin/Cos series. The horizontal velocity, for example, becomes
111110

112111
```math
113-
\uu(x, y, z, t) = U(x, y, t) + \cos(mz) u(x, y, t) \per
112+
\uu(x, y, z, t) \mapsto U(x, y, t) + \cos(mz) u(x, y, t) \per
114113
```
115114

116115
The horizontal velocity $\vv$, pressure $\pp$, and vertical vorticity $\zzeta$ are also expanded in $\cos(mz)$,
@@ -124,7 +123,7 @@ Projecting the vertical vorticity equation onto Sin/Cos modes an equation for th
124123
```math
125124
\p_t Z + \J \left ( \Psi, Z \right )
126125
+ \tfrac{1}{2} \bnabla \bcdot \left ( \bu \zeta \right ) + \tfrac{m}{2} \pnabla \bcdot \left ( \bu w \right )
127-
= D^{Z} \com
126+
= D_0 Z \com
128127
```
129128

130129
where $\J(a, b) = (\p_x a)(\p_y b) - (\p_y a)(\p_x b)$ is the Jacobian operator, contraction with $\pnabla = -\p_y \bxh + \p_x \byh$ gives the vertical component of the curl, and $\Psi$ is the barotropic streamfunction defined so that
@@ -136,17 +135,16 @@ where $\J(a, b) = (\p_x a)(\p_y b) - (\p_y a)(\p_x b)$ is the Jacobian operator,
136135
The baroclinic components obey
137136

138137
```math
139-
\p_t u - f \v + \p_x p = - \J \left ( \Psi, u \right ) - \bu \bcdot \bnabla U + D^u \com \\
140-
\p_t \v + f u + \p_y p = - \J \left ( \Psi, \v \right ) - \bu \bcdot \bnabla V + D^\v \com \\
141-
\p_t p - \tfrac{N^2}{m} w = - \J \left ( \Psi, p \right ) + D^p \per
138+
\p_t u - f \v + \p_x p = - \J \left ( \Psi, u \right ) - \bu \bcdot \bnabla U + D_1u \com \\
139+
\p_t \v + f u + \p_y p = - \J \left ( \Psi, \v \right ) - \bu \bcdot \bnabla V + D_1\v \com \\
140+
\p_t p - \tfrac{N^2}{m} w = - \J \left ( \Psi, p \right ) + D_1p \per
142141
```
143142

144143
The dissipation operators are defined
145144

146145
```math
147-
D^Z = \nu_0 (-1)^{n_0} \nabla^{2n_0} Z + \mu_0 (-1)^{m_0} \nabla^{2m_0} Z \com \\
148-
D^u = \nu_1 (-1)^{n_1} \nabla^{2n_1} u + \mu_1 (-1)^{m_1} \nabla^{2m_1} u \com \\
149-
D^\v = \nu_1 (-1)^{n_1} \nabla^{2n_1} \v + \mu_1 (-1)^{m_1} \nabla^{2m_1} \v \com
146+
D_0 = \nu_0 (-1)^{n_0} \nabla^{2n_0} + \mu_0 (-1)^{m_0} \nabla^{2m_0} \com \\
147+
D_1 = \nu_1 (-1)^{n_1} \nabla^{2n_1} + \mu_1 (-1)^{m_1} \nabla^{2m_1} \com
150148
```
151149

152150
where $2n_0$ and $2m_0$ are the hyperviscous orders of the arbitrary barotropic dissipation operators

0 commit comments

Comments
 (0)