Skip to content

Commit 5794758

Browse files
Zenodo checkpoint
1 parent ad63956 commit 5794758

File tree

97 files changed

+4962
-65490
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

97 files changed

+4962
-65490
lines changed

Manual.pdf

Whitespace-only changes.

README.md

Lines changed: 6 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,11 @@
1-
# SwarmCG (modifed version for CG lipids FF)
1+
# SwarmCG (modified version for CG lipids FF)
22

33
### Contents
44

55
- [Overview](#overview)
66
- [System Requirements](#system-requirements)
77
- [Installation Guide](#installation-guide)
88
- [Demo](#demo)
9-
- [Results & Reproduction](#results-&-reproduction)
109
- [License](./LICENSE)
1110
- [Issues](https://github.com/GMPavanLab/SwarmCGM/issues)
1211
- [Citation](#citation)
@@ -88,7 +87,7 @@ For a quick demonstration of the software, one can execute the following command
8887
python3 optimize_lipids.py -cfg minimalistic_demo.yaml
8988
```
9089

91-
This minimalistic example should execute within 18-24 hours on the "testing purpose" hardware described, and will require 2 calculation slots of 4 cores each (no GPU).
90+
This minimalistic demo should execute within 18-24 hours on the "testing purpose" hardware described, and will require 2 calculation slots of 4 cores each (no GPU).
9291
It will be possible to see that the FF score decreases during optimization, and that the 2 different lipid bilayers have decreasing % deviation on their area per lipid (APL) and Dʜʜ thickness with respect to experimental data.
9392
The OT-B and OT-NB metrics will also decrease, indicating that the FF parameters reproduce the spatial features described in the (mapped) AA reference trajectories.
9493

@@ -103,38 +102,10 @@ These values can be even further decreased for the purpose of testing the consis
103102
As the input of SwarmCG requires a preliminary CG mapping choice (*i.e.* defining the positions and types of the CG beads, bonds and angles used for building the molecular models which parameters will be optimized), several parameters allow to define precisely which parameters should be optimized, or which other ones stay at given fixed values, according to your requirements.
104103
To this end, SwarmCG makes use of [YAML](https://yaml.org/) config files to simplify this process and help keeping track of the hyper-parameters used for an optimization run.
105104

106-
Please refer to [the manual](https://github.com/GMPavanLab/SwarmCGM/tree/main/Manual.pdf) for a breakdown of each parameter and step-by-step guidance on how to parametrize an optimization procedure.
107-
Additional example config files are provided below and can also be related to the content and explanations provided in the paper.
108-
109-
# Results & Reproduction
110-
111-
All the optimized CG models produced in the paper, and their associated FFs, can be found in folder [results](https://github.com/GMPavanLab/SwarmCGM/tree/main/results/).
112-
The config files cited in the 3 next subsections are available in the 3 corresponding subdirectories.
113-
114-
### Example 1: Optimisation of Martini-based CG models of PC lipids in explicit solvent
115-
116-
For this demonstration, we use reference data from 7 different phosphatidylcholine (PC) lipids and create optimized CG models of high resolution, in the framework of Martini and in explicit solvent.
117-
118-
```
119-
python3 optimize_lipids.py -cfg example1.yaml
120-
```
121-
122-
### Example 2: Optimisation of Martini-based CG models of lipids in implicit solvent
123-
124-
For this demonstration, we use reference data from 4 different phosphatidylcholine (PC) lipids and create optimized CG models of high resolution, in the framework of Martini and in implicit solvent.
125-
126-
```
127-
python3 optimize_lipids.py -cfg example2.yaml
128-
```
129-
130-
### Example 3: Conception of custom low-resolution CG lipid models in implicit solvent
131-
132-
For this demonstration, we use reference data from 4 different phosphatidylcholine (PC) lipids and create optimized CG models of low resolution, ab-initio and in implicit solvent.
133-
134-
```
135-
python3 optimize_lipids.py -cfg example3.yaml
136-
```
105+
Please refer to [the demo YAML config file](https://github.com/GMPavanLab/SwarmCGM/tree/main/minimalistic_demo.yaml) for a breakdown of each parameter and step-by-step guidance on how to parametrize an optimization procedure.
106+
These parameters can also be related to the content and explanations provided in the paper.
137107

138108
# Citation
139109

140-
The preprint for SwarmCG can be found [on ArXiv](arxiv.org/abs/2107.01012).
110+
The testing of this modified version of SwarmCG, for building lipid models at different resolutions, is [published in JCP](https://aip.scitation.org/doi/abs/10.1063/5.0079044).
111+
The preprint version is available [on ArXiv](arxiv.org/abs/2107.01012).
Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
[moleculetype]
2+
; molname nrexcl
3+
DLPC 1
4+
5+
6+
[atoms]
7+
; id type resnr residu atom cgnr charge
8+
9+
1 K0 1 DLPC K0 1 1.0
10+
2 K1 1 DLPC K1 2 -1.0
11+
12+
3 MB 1 DLPC MBA 3 0
13+
4 SB 1 DLPC SBA 4 0
14+
15+
5 MB 1 DLPC MBB 5 0
16+
6 SB 1 DLPC SBB 6 0
17+
18+
19+
[bonds]
20+
; i j funct length force.c.
21+
22+
1 2 1 0 0 ; B1
23+
24+
2 3 1 0 0 ; B2
25+
3 4 1 0 0 ; B8
26+
27+
2 5 1 0 0 ; B3
28+
5 6 1 0 0 ; B8
29+
30+
31+
[angles]
32+
; i j k funct length force.c.
33+
34+
1 2 3 2 0 0 ; A1
35+
1 2 5 2 0 0 ; A4
36+
; 3 2 5 2 0 0 ; A5
37+
38+
2 3 4 2 0 0 ; A14
39+
40+
2 5 6 2 0 0 ; A15

REF_MAPPINGS_LIPIDS/CG_DLPC_MARTINI3REMAP_WET.itp

Lines changed: 0 additions & 52 deletions
This file was deleted.

REF_MAPPINGS_LIPIDS/CG_DMPC_MARTINI3REMAP_WET.itp

Lines changed: 0 additions & 58 deletions
This file was deleted.
Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
[moleculetype]
2+
; molname nrexcl
3+
DOPC 1
4+
5+
6+
[atoms]
7+
; id type resnr residu atom cgnr charge
8+
9+
1 K0 1 DOPC K0 1 1.0
10+
2 K1 1 DOPC K1 2 -1.0
11+
12+
3 MB 1 DOPC MBA 3 0
13+
4 UB 1 DOPC UBA 4 0
14+
5 SB 1 DOPC SBA 5 0
15+
16+
6 MB 1 DOPC MBB 6 0
17+
7 UB 1 DOPC UBB 7 0
18+
8 SB 1 DOPC SBB 8 0
19+
20+
21+
[bonds]
22+
; i j funct length force.c.
23+
24+
1 2 1 0 0 ; B1
25+
26+
2 3 1 0 0 ; B2
27+
3 4 1 0 0 ; B4
28+
4 5 1 0 0 ; B5
29+
30+
2 6 1 0 0 ; B3
31+
6 7 1 0 0 ; B4
32+
7 8 1 0 0 ; B5
33+
34+
35+
[angles]
36+
; i j k funct length force.c.
37+
38+
1 2 3 2 0 0 ; A1
39+
1 2 6 2 0 0 ; A4
40+
; 3 2 6 2 0 0 ; A5
41+
42+
2 3 4 2 0 0 ; A8
43+
3 4 5 2 0 0 ; A9
44+
45+
2 6 7 2 0 0 ; A12
46+
6 7 8 2 0 0 ; A9

REF_MAPPINGS_LIPIDS/CG_DOPC_MARTINI3REMAP_WET.itp

Lines changed: 0 additions & 64 deletions
This file was deleted.
Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
[moleculetype]
2+
; molname nrexcl
3+
DPPC 1
4+
5+
6+
[atoms]
7+
; id type resnr residu atom cgnr charge
8+
9+
1 K0 1 DPPC K0 1 1.0
10+
2 K1 1 DPPC K1 2 -1.0
11+
12+
3 MS 1 DPPC MSA 3 0
13+
4 SB 1 DPPC SBA 4 0
14+
5 SB 1 DPPC SBA 5 0
15+
16+
6 MS 1 DPPC MSB 6 0
17+
7 SB 1 DPPC SBB 7 0
18+
8 SB 1 DPPC SBB 8 0
19+
20+
21+
[bonds]
22+
; i j funct length force.c.
23+
24+
1 2 1 0 0 ; B1
25+
26+
2 3 1 0 0 ; B11
27+
3 4 1 0 0 ; B6
28+
4 5 1 0 0 ; B7
29+
30+
2 6 1 0 0 ; B10
31+
6 7 1 0 0 ; B6
32+
7 8 1 0 0 ; B7
33+
34+
35+
[angles]
36+
; i j k funct length force.c.
37+
38+
1 2 3 2 0 0 ; A6
39+
1 2 6 2 0 0 ; A2
40+
; 3 2 6 2 0 0 ; A7
41+
42+
2 3 4 2 0 0 ; A13
43+
3 4 5 2 0 0 ; A11
44+
45+
2 6 7 2 0 0 ; A10
46+
6 7 8 2 0 0 ; A11

0 commit comments

Comments
 (0)