1
- # import pandas as pd
1
+ #import pandas as pd
2
2
from lenskit .data import Dataset ,from_interactions_df
3
3
4
4
def min_ratings_per_user (dataset : Dataset , num_ratings : int , count_duplicates : bool = False ):
@@ -26,7 +26,7 @@ def min_ratings_per_user(dataset: Dataset, num_ratings: int, count_duplicates: b
26
26
else :
27
27
valid_users = user_stats [user_stats ['item_count' ] >= num_ratings ].index # item_count: number of unique items rated
28
28
# convert the interaction table to a pandas DataFrame and filter by valid users
29
- users_of_interest = dataset .iteraction_table (format = 'pandas' , original_ids = True )
29
+ users_of_interest = dataset .interaction_table (format = 'pandas' , original_ids = True )
30
30
users_of_interest = users_of_interest [users_of_interest ['user_id' ].isin (valid_users )]
31
31
return from_interactions_df (users_of_interest )
32
32
@@ -41,7 +41,7 @@ def max_ratings_per_user(dataset: Dataset, num_ratings: int, count_duplicates: b
41
41
dataset: Dataset
42
42
LensKit Dataset object containing user-item interactions with ratings
43
43
num_ratings: int
44
- Minimum number of ratings per user
44
+ Maximum number of ratings per user
45
45
count_duplicates: bool = False
46
46
If True, all ratings are counted, otherwise only unique ratings are counted
47
47
@@ -58,6 +58,6 @@ def max_ratings_per_user(dataset: Dataset, num_ratings: int, count_duplicates: b
58
58
else :
59
59
valid_users = user_stats [user_stats ['item_count' ] <= num_ratings ].index # item_count: number of unique items rated
60
60
# convert the interaction table to a pandas DataFrame and filter by valid users
61
- users_of_interest = dataset .iteraction_table (format = 'pandas' , original_ids = True )
61
+ users_of_interest = dataset .interaction_table (format = 'pandas' , original_ids = True )
62
62
users_of_interest = users_of_interest [users_of_interest ['user_id' ].isin (valid_users )]
63
63
return from_interactions_df (users_of_interest )
0 commit comments