@@ -29,12 +29,14 @@ def __init__(self, ensemble_size: int, lenskit_metric,
29
29
30
30
self .ensemble_size = ensemble_size
31
31
32
+ self .lenskit_metric = lenskit_metric ()
33
+
32
34
if maximize_metric :
33
35
def minimized_metric (y_ture , y_pred ):
34
- return - lenskit_metric .measure_list (y_pred , y_ture )
36
+ return - self . lenskit_metric .measure_list (y_pred , y_ture )
35
37
else :
36
38
def minimized_metric (y_ture , y_pred ):
37
- return lenskit_metric .measure_list (y_pred , y_ture )
39
+ return self . lenskit_metric .measure_list (y_pred , y_ture )
38
40
39
41
self .metric = minimized_metric
40
42
@@ -131,15 +133,12 @@ def _fast(self, predictions: List[np.ndarray], labels: np.ndarray) -> None:
131
133
labels_df .insert (0 , "item_id" , labels_df .index )
132
134
133
135
fant_ensemble_prediction_df = pd .DataFrame (fant_ensemble_prediction )
134
- fant_ensemble_prediction_df .columns = ["rating " ]
136
+ fant_ensemble_prediction_df .columns = ["score " ]
135
137
fant_ensemble_prediction_df .insert (0 , "item_id" , fant_ensemble_prediction_df .index )
136
138
137
139
labels_il = ItemList .from_df (labels_df )
138
140
fant_ensemble_prediction_il = ItemList .from_df (fant_ensemble_prediction_df )
139
141
140
- print ("!!! labels: \n " , labels_df )
141
- print ("!!! fant_ensemble_prediction: \n " , fant_ensemble_prediction_df )
142
-
143
142
losses [j ] = self .metric (labels_il , fant_ensemble_prediction_il )
144
143
145
144
all_best = np .argwhere (losses == np .nanmin (losses )).flatten ()
0 commit comments