3
3
4
4
from ConfigSpace import ConfigurationSpace
5
5
6
- from lkauto .utils .get_model_from_cs import get_model_from_cs
7
- from lkauto .optimization_strategies .bayesian_optimization import bayesian_optimization
8
- from lkauto .optimization_strategies .random_search import random_search
9
- from lkauto .utils .filer import Filer
10
- from lkauto .ensemble .ensemble_builder import build_ensemble
11
- from lkauto .preprocessing .preprocessing import preprocess_data
12
- from lkauto .utils .logging import get_logger
13
-
14
- from lenskit .metrics .predict import rmse
15
- from lenskit .metrics .topn import ndcg
16
- from lenskit .algorithms import Predictor
17
- from lenskit import Recommender
6
+ from utils .get_model_from_cs import get_model_from_cs
7
+ from optimization_strategies .bayesian_optimization import bayesian_optimization
8
+ from optimization_strategies .random_search import random_search
9
+ from utils .filer import Filer
10
+ from ensemble .ensemble_builder import build_ensemble
11
+ from preprocessing .preprocessing import preprocess_data
12
+ from utils .logging import get_logger
13
+
14
+ from lenskit .metrics import RMSE
15
+ from lenskit .metrics import NDCG
16
+ from lenskit .pipeline import Component
17
+
18
+ # from lenskit.algorithms import Predictor
19
+ # from lenskit import Recommender
18
20
19
21
from typing import Tuple
20
22
21
23
22
24
def get_best_prediction_model (train : pd .DataFrame ,
23
25
validation : pd .DataFrame = None ,
24
26
cs : ConfigurationSpace = None ,
25
- optimization_metric = rmse ,
27
+ optimization_metric = RMSE ,
26
28
optimization_strategie : str = 'bayesian' ,
27
29
time_limit_in_sec : int = 2700 ,
28
30
num_evaluations : int = 500 ,
@@ -42,7 +44,7 @@ def get_best_prediction_model(train: pd.DataFrame,
42
44
timestamp_col : str = 'timestamp' ,
43
45
include_timestamp : bool = True ,
44
46
log_level : str = 'INFO' ,
45
- filer : Filer = None ) -> Tuple [Predictor , dict ]:
47
+ filer : Filer = None ) -> Tuple [Component , dict ]:
46
48
"""
47
49
returns the best Predictor found in the defined search time
48
50
@@ -211,7 +213,7 @@ def get_best_prediction_model(train: pd.DataFrame,
211
213
else :
212
214
# build model from best model configuration found by SMAC
213
215
model = get_model_from_cs (incumbent , feedback = 'explicit' )
214
- incumbent = incumbent . get_dictionary ( )
216
+ incumbent = dict ( incumbent )
215
217
logger .info ('--Best Model--' )
216
218
logger .info (incumbent )
217
219
@@ -224,7 +226,7 @@ def get_best_prediction_model(train: pd.DataFrame,
224
226
def get_best_recommender_model (train : pd .DataFrame ,
225
227
validation : pd .DataFrame = None ,
226
228
cs : ConfigurationSpace = None ,
227
- optimization_metric = ndcg ,
229
+ optimization_metric = NDCG ,
228
230
optimization_strategie : str = 'bayesian' ,
229
231
time_limit_in_sec : int = 2700 ,
230
232
num_evaluations : int = 500 ,
@@ -244,7 +246,7 @@ def get_best_recommender_model(train: pd.DataFrame,
244
246
timestamp_col : str = 'timestamp' ,
245
247
include_timestamp : bool = True ,
246
248
log_level : str = 'INFO' ,
247
- filer : Filer = None ) -> Tuple [Recommender , dict ]:
249
+ filer : Filer = None ) -> Tuple [Component , dict ]:
248
250
"""
249
251
returns the best Recommender found in the defined search time
250
252
0 commit comments