Skip to content

Commit 92f9aef

Browse files
committed
update readme
1 parent 7b04f87 commit 92f9aef

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
[![DecisionTree](http://pkg.julialang.org/badges/DecisionTree_0.6.svg)](http://pkg.julialang.org/?pkg=DecisionTree&ver=0.6)
88
[![DecisionTree](http://pkg.julialang.org/badges/DecisionTree_0.7.svg)](http://pkg.julialang.org/?pkg=DecisionTree&ver=0.7)
99

10-
Julia implementation of Decision Trees & Random Forests
10+
Julia implementation of Decision Tree and Random Forest algorithms
1111

1212
## Classification
1313
* pre-pruning (max depth, min leaf size)
@@ -72,7 +72,7 @@ Also have a look at these [classification](https://github.com/cstjean/ScikitLear
7272

7373
## Native API
7474
### Classification Example
75-
Pruned Tree Classifier
75+
Decision Tree Classifier
7676
```julia
7777
# train full-tree classifier
7878
model = build_tree(labels, features)
@@ -101,7 +101,7 @@ model = build_tree(labels, features, nsubfeatures, maxdepth, min_samples_leaf, m
101101
Random Forest Classifier
102102
```julia
103103
# train random forest classifier
104-
# using 2 random features, 10 trees, 0.5 portion of samples per tree (optional), and a maximum tree depth of 6 (optional)
104+
# using 2 random features, 10 trees, 0.5 portion of samples per tree, and a maximum tree depth of 6
105105
model = build_forest(labels, features, 2, 10, 0.5, 6)
106106
# apply learned model
107107
apply_forest(model, [5.9,3.0,5.1,1.9])
@@ -161,7 +161,7 @@ model = build_tree(labels, features, min_samples_leaf, nsubfeatures, max_depth,
161161
Regression Random Forest
162162
```julia
163163
# train regression forest, using 2 random features, 10 trees,
164-
# averaging of 5 samples per leaf (optional), and 0.7 portion of samples per tree (optional)
164+
# averaging of 5 samples per leaf, and 0.7 portion of samples per tree
165165
model = build_forest(labels, features, 2, 10, 5, 0.7)
166166
# apply learned model
167167
apply_forest(model, [-0.9,3.0,5.1,1.9,0.0])

0 commit comments

Comments
 (0)