@@ -2127,14 +2127,17 @@ def abaco_run(
2127
2127
2128
2128
decoder = ZINBDecoder (nn .Sequential (* modules ))
2129
2129
else :
2130
- decoder_net = [d_z + n_batches ] + decoder_net # first value: conditional
2131
- decoder_net .append (2 * input_size ) # last layer
2132
- modules = []
2133
- for i in range (len (decoder_net ) - 1 ):
2134
- modules .append (nn .Linear (decoder_net [i ], decoder_net [i + 1 ]))
2135
- modules .append (vae_act_func )
2136
- modules .pop () # Drop last activation function
2137
- decoder = ZIDirichletDecoder (nn .Sequential (* modules ))
2130
+ raise NotImplementedError (
2131
+ "Relative abundance data type isn't implemented yet to ABaCo. Set variable 'count' to True."
2132
+ )
2133
+ # decoder_net = [d_z + n_batches] + decoder_net # first value: conditional
2134
+ # decoder_net.append(2 * input_size) # last layer
2135
+ # modules = []
2136
+ # for i in range(len(decoder_net) - 1):
2137
+ # modules.append(nn.Linear(decoder_net[i], decoder_net[i + 1]))
2138
+ # modules.append(vae_act_func)
2139
+ # modules.pop() # Drop last activation function
2140
+ # decoder = ZIDirichletDecoder(nn.Sequential(*modules))
2138
2141
2139
2142
# Defining VAE
2140
2143
vae = VampPriorMixtureConditionalVAE (
@@ -2187,14 +2190,17 @@ def abaco_run(
2187
2190
2188
2191
decoder = ZINBDecoder (nn .Sequential (* modules ))
2189
2192
else :
2190
- decoder_net = [d_z + n_batches ] + decoder_net # first value: conditional
2191
- decoder_net .append (2 * input_size ) # last layer
2192
- modules = []
2193
- for i in range (len (decoder_net ) - 1 ):
2194
- modules .append (nn .Linear (decoder_net [i ], decoder_net [i + 1 ]))
2195
- modules .append (vae_act_func )
2196
- modules .pop () # Drop last activation function
2197
- decoder = ZIDirichletDecoder (nn .Sequential (* modules ))
2193
+ raise NotImplementedError (
2194
+ "Relative abundance data type isn't implemented yet to ABaCo. Set variable 'count' to True."
2195
+ )
2196
+ # decoder_net = [d_z + n_batches] + decoder_net # first value: conditional
2197
+ # decoder_net.append(2 * input_size) # last layer
2198
+ # modules = []
2199
+ # for i in range(len(decoder_net) - 1):
2200
+ # modules.append(nn.Linear(decoder_net[i], decoder_net[i + 1]))
2201
+ # modules.append(vae_act_func)
2202
+ # modules.pop() # Drop last activation function
2203
+ # decoder = ZIDirichletDecoder(nn.Sequential(*modules))
2198
2204
2199
2205
# Defining prior
2200
2206
prior = MoGPrior (d_z , K )
@@ -2243,14 +2249,17 @@ def abaco_run(
2243
2249
2244
2250
decoder = ZINBDecoder (nn .Sequential (* modules ))
2245
2251
else :
2246
- decoder_net = [d_z + n_batches ] + decoder_net # first value: conditional
2247
- decoder_net .append (2 * input_size ) # last layer
2248
- modules = []
2249
- for i in range (len (decoder_net ) - 1 ):
2250
- modules .append (nn .Linear (decoder_net [i ], decoder_net [i + 1 ]))
2251
- modules .append (vae_act_func )
2252
- modules .pop () # Drop last activation function
2253
- decoder = ZIDirichletDecoder (nn .Sequential (* modules ))
2252
+ raise NotImplementedError (
2253
+ "Relative abundance data type isn't implemented yet to ABaCo. Set variable 'count' to True."
2254
+ )
2255
+ # decoder_net = [d_z + n_batches] + decoder_net # first value: conditional
2256
+ # decoder_net.append(2 * input_size) # last layer
2257
+ # modules = []
2258
+ # for i in range(len(decoder_net) - 1):
2259
+ # modules.append(nn.Linear(decoder_net[i], decoder_net[i + 1]))
2260
+ # modules.append(vae_act_func)
2261
+ # modules.pop() # Drop last activation function
2262
+ # decoder = ZIDirichletDecoder(nn.Sequential(*modules))
2254
2263
2255
2264
# Defining prior
2256
2265
prior = NormalPrior (d_z )
@@ -2787,18 +2796,21 @@ def abaco_run_ensemble(
2787
2796
decoder = ZINBDecoder (nn .Sequential (* modules ))
2788
2797
decoders .append (decoder )
2789
2798
else :
2790
- for _ in range (n_dec ):
2791
- decoder_net = [
2792
- d_z + n_batches
2793
- ] + decoder_net # first value: conditional
2794
- decoder_net .append (2 * input_size ) # last layer
2795
- modules = []
2796
- for i in range (len (decoder_net ) - 1 ):
2797
- modules .append (nn .Linear (decoder_net [i ], decoder_net [i + 1 ]))
2798
- modules .append (vae_act_func )
2799
- modules .pop () # Drop last activation function
2800
- decoder = ZIDirichletDecoder (nn .Sequential (* modules ))
2801
- decoders .append (decoder )
2799
+ raise NotImplementedError (
2800
+ "Relative abundance data type isn't implemented yet to ABaCo. Set variable 'count' to True."
2801
+ )
2802
+ # for _ in range(n_dec):
2803
+ # decoder_net = [
2804
+ # d_z + n_batches
2805
+ # ] + decoder_net # first value: conditional
2806
+ # decoder_net.append(2 * input_size) # last layer
2807
+ # modules = []
2808
+ # for i in range(len(decoder_net) - 1):
2809
+ # modules.append(nn.Linear(decoder_net[i], decoder_net[i + 1]))
2810
+ # modules.append(vae_act_func)
2811
+ # modules.pop() # Drop last activation function
2812
+ # decoder = ZIDirichletDecoder(nn.Sequential(*modules))
2813
+ # decoders.append(decoder)
2802
2814
2803
2815
# Defining VAE
2804
2816
vae = VampPriorMixtureConditionalEnsembleVAE (
@@ -2851,14 +2863,17 @@ def abaco_run_ensemble(
2851
2863
2852
2864
decoder = ZINBDecoder (nn .Sequential (* modules ))
2853
2865
else :
2854
- decoder_net = [d_z + n_batches ] + decoder_net # first value: conditional
2855
- decoder_net .append (2 * input_size ) # last layer
2856
- modules = []
2857
- for i in range (len (decoder_net ) - 1 ):
2858
- modules .append (nn .Linear (decoder_net [i ], decoder_net [i + 1 ]))
2859
- modules .append (vae_act_func )
2860
- modules .pop () # Drop last activation function
2861
- decoder = ZIDirichletDecoder (nn .Sequential (* modules ))
2866
+ raise NotImplementedError (
2867
+ "Relative abundance data type isn't implemented yet to ABaCo. Set variable 'count' to True."
2868
+ )
2869
+ # decoder_net = [d_z + n_batches] + decoder_net # first value: conditional
2870
+ # decoder_net.append(2 * input_size) # last layer
2871
+ # modules = []
2872
+ # for i in range(len(decoder_net) - 1):
2873
+ # modules.append(nn.Linear(decoder_net[i], decoder_net[i + 1]))
2874
+ # modules.append(vae_act_func)
2875
+ # modules.pop() # Drop last activation function
2876
+ # decoder = ZIDirichletDecoder(nn.Sequential(*modules))
2862
2877
2863
2878
# Defining prior
2864
2879
prior = MoGPrior (d_z , K )
@@ -2907,14 +2922,17 @@ def abaco_run_ensemble(
2907
2922
2908
2923
decoder = ZINBDecoder (nn .Sequential (* modules ))
2909
2924
else :
2910
- decoder_net = [d_z + n_batches ] + decoder_net # first value: conditional
2911
- decoder_net .append (2 * input_size ) # last layer
2912
- modules = []
2913
- for i in range (len (decoder_net ) - 1 ):
2914
- modules .append (nn .Linear (decoder_net [i ], decoder_net [i + 1 ]))
2915
- modules .append (vae_act_func )
2916
- modules .pop () # Drop last activation function
2917
- decoder = ZIDirichletDecoder (nn .Sequential (* modules ))
2925
+ raise NotImplementedError (
2926
+ "Relative abundance data type isn't implemented yet to ABaCo. Set variable 'count' to True."
2927
+ )
2928
+ # decoder_net = [d_z + n_batches] + decoder_net # first value: conditional
2929
+ # decoder_net.append(2 * input_size) # last layer
2930
+ # modules = []
2931
+ # for i in range(len(decoder_net) - 1):
2932
+ # modules.append(nn.Linear(decoder_net[i], decoder_net[i + 1]))
2933
+ # modules.append(vae_act_func)
2934
+ # modules.pop() # Drop last activation function
2935
+ # decoder = ZIDirichletDecoder(nn.Sequential(*modules))
2918
2936
2919
2937
# Defining prior
2920
2938
prior = NormalPrior (d_z )
0 commit comments