diff --git a/.github/workflows/ci_gcu.yml b/.github/workflows/ci_gcu.yml index bc76f38e28..408a6bed3c 100644 --- a/.github/workflows/ci_gcu.yml +++ b/.github/workflows/ci_gcu.yml @@ -29,7 +29,9 @@ jobs: REPO_NAME="${FULL_REPO##*/}" BASE_BRANCH="${{ github.base_ref }}" # Clean the repository directory before starting - docker run --rm --net=host -v $(pwd):/workspace -w /workspace \ + docker run --rm --net=host -v $(pwd):/workspace \ + -v ${{ github.workspace }}/../../..:${{ github.workspace }}/../../.. \ + -w /workspace \ -e "REPO_NAME=${REPO_NAME}" \ -e "BASE_BRANCH=${BASE_BRANCH}" \ ${docker_image} /bin/bash -c ' @@ -40,6 +42,7 @@ jobs: ' git config --global user.name "FastDeployCI" git config --global user.email "fastdeploy_ci@example.com" + source ${{ github.workspace }}/../../../proxy git clone ${REPO} ${REPO_NAME} -b ${BASE_BRANCH} cd FastDeploy if [ "${{ github.event_name }}" = "pull_request" ]; then @@ -50,6 +53,9 @@ jobs: git checkout ${{ github.sha }} git log -n 3 --oneline fi + echo "Copy models..." + sudo mkdir -p ci_models && sudo cp -r /work/deps/ERNIE-4.5-21B-A3B-Paddle ci_models + echo "Copy models done." - name: Run CI unittest env: @@ -71,19 +77,21 @@ jobs: echo "PARENT_DIR:$PARENT_DIR" echo "Install drivers..." cd /work/deps - bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y + sudo bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y cd - - docker run --rm --network=host --ipc=host -it --privileged \ - -v $(pwd):/workspace -w /workspace \ - -v "/home:/home" \ - -v "/work:/work" \ - -e "MODEL_PATH=/work/models" \ + echo "Create docker..." + docker run --rm --network=host --ipc=host --privileged \ + -v $(pwd):/workspace \ + -v /home:/home \ + -v /work:/work \ + -w /workspace \ + -e "MODEL_PATH=./ci_models" \ -e "http_proxy=$(git config --global --get http.proxy)" \ -e "https_proxy=$(git config --global --get https.proxy)" \ -e "FD_API_PORT=${FD_API_PORT}" \ -e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \ -e "FD_METRICS_PORT=${FD_METRICS_PORT}" \ - ${docker_image} /bin/bash -c " + ${docker_image} /bin/bash -c " git config --global --add safe.directory /workspace/FastDeploy cd FastDeploy bash scripts/run_ci_gcu.sh diff --git a/fastdeploy/model_executor/layers/backends/gcu/attention/flash_attn_backend.py b/fastdeploy/model_executor/layers/backends/gcu/attention/flash_attn_backend.py index ef804406ef..4f94e561ab 100644 --- a/fastdeploy/model_executor/layers/backends/gcu/attention/flash_attn_backend.py +++ b/fastdeploy/model_executor/layers/backends/gcu/attention/flash_attn_backend.py @@ -76,6 +76,8 @@ def __init__( kv_num_heads: int, num_heads: int, head_dim: int, + encoder_block_shape_q: int = -1, + decoder_block_shape_q: int = -1, ): """ GCUFlashAttnBackend __init__ @@ -94,7 +96,7 @@ def __init__( self.head_dim = head_dim self.scaling = 1.0 / (self.head_dim**0.5) self.num_layers = fd_config.model_config.num_hidden_layers - self.position_ids_base = paddle.arange(self.max_seq_len) + self.position_ids_base = np.arange(self.max_seq_len) # TODO(zhengjun): Need to adapt the allocation logic and # temporarily allocate according to fixed size diff --git a/fastdeploy/model_executor/layers/backends/gcu/attention/mem_efficient_attn_backend.py b/fastdeploy/model_executor/layers/backends/gcu/attention/mem_efficient_attn_backend.py index ef2e6b3754..8ecd1b4be7 100644 --- a/fastdeploy/model_executor/layers/backends/gcu/attention/mem_efficient_attn_backend.py +++ b/fastdeploy/model_executor/layers/backends/gcu/attention/mem_efficient_attn_backend.py @@ -74,6 +74,8 @@ def __init__( kv_num_heads: int, num_heads: int, head_dim: int, + encoder_block_shape_q: int = -1, + decoder_block_shape_q: int = -1, ): """ GCUMemEfficientAttnBackend __init__ @@ -92,7 +94,7 @@ def __init__( self.head_dim = head_dim self.scaling = 1.0 / (self.head_dim**0.5) self.num_layers = fd_config.model_config.num_hidden_layers - self.position_ids_base = paddle.arange(self.max_seq_len) + self.position_ids_base = np.arange(self.max_seq_len) # TODO(zhengjun): Need to adapt the allocation logic and # temporarily allocate according to fixed size diff --git a/fastdeploy/worker/gcu_model_runner.py b/fastdeploy/worker/gcu_model_runner.py index d7054cf938..c1d7fe60c2 100644 --- a/fastdeploy/worker/gcu_model_runner.py +++ b/fastdeploy/worker/gcu_model_runner.py @@ -295,7 +295,7 @@ def get_attr_from_request(request, attr, default_value=None): if self.speculative_method in ["mtp"]: self.proposer.insert_prefill_inputs(req_dicts) - self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests] + self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int): """Set dummy prefill inputs to share_inputs""" @@ -675,7 +675,7 @@ def initialize_attn_backend(self) -> None: ) self.share_inputs["decoder_batch_ids"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32") self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32") - self.share_inputs["decoder_num_blocks_cpu"] = paddle.full([1], 0, dtype="int32").pin_memory() + self.share_inputs["decoder_num_blocks_cpu"] = paddle.full([1], 0, dtype="int32").cpu() self.share_inputs["max_len_tensor_cpu"] = paddle.full([8], 0, dtype="int32").cpu() # Get the attention backend @@ -1062,9 +1062,7 @@ class at the server level, which is too granular for ModelRunner. self._update_chunked_prefill(model_forward_batch) self._add_cache(model_forward_batch) - self.seq_lens_this_time_buffer[:num_running_requests].copy_( - self.share_inputs["seq_lens_this_time"][:num_running_requests], False - ) + self.seq_lens_this_time_buffer.copy_(self.share_inputs["seq_lens_this_time"], False) return None def _add_cache(self, model_forward_batch) -> None: diff --git a/scripts/run_ci_gcu.sh b/scripts/run_ci_gcu.sh index 76d4d1767c..172511216f 100644 --- a/scripts/run_ci_gcu.sh +++ b/scripts/run_ci_gcu.sh @@ -1,13 +1,18 @@ -#!/bin/bash +#!/usr/bin/env bash DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)" -echo "$DIR" +echo "Current directory: ${DIR}" -#先kill一遍 -ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true -ps -efww | grep -E '8188' | grep -v grep | awk '{print $2}' | xargs kill -9 || true -lsof -t -i :8188 | xargs kill -9 || true +function stop_processes() { + ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true + ps -efww | grep -E '8188' | grep -v grep | awk '{print $2}' | xargs kill -9 || true + lsof -t -i :8188 | xargs kill -9 || true +} -export model_path=${MODEL_PATH}/paddle/ERNIE-4.5-21B-A3B-Paddle +echo "Clean up processes..." +stop_processes +echo "Clean up completed." + +export model_path=${MODEL_PATH}/ERNIE-4.5-21B-A3B-Paddle echo "pip install requirements" python -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple @@ -15,6 +20,7 @@ echo "uninstall org" python -m pip uninstall paddlepaddle -y python -m pip uninstall paddle-custom-gcu -y python -m pip install paddlepaddle==3.1.0a0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ +python -m pip install --pre paddle-custom-gcu==3.0.0.dev20250801 -i https://www.paddlepaddle.org.cn/packages/nightly/gcu/ echo "build whl" bash build.sh 1 || exit 1 @@ -22,12 +28,12 @@ unset http_proxy unset https_proxy unset no_proxy -# 起服务 rm -rf log/* rm -f core* -# pkill -9 python #流水线不执行这个 -#清空消息队列 + +# Empty the message queue ipcrm --all=msg +echo "Start server..." python -m fastdeploy.entrypoints.openai.api_server \ --model ${model_path} \ --port 8188 \ @@ -38,21 +44,40 @@ python -m fastdeploy.entrypoints.openai.api_server \ --max-num-seqs 8 \ --quantization wint4 > server.log 2>&1 & -sleep 60 -# 探活 -TIMEOUT=$((5 * 60)) -INTERVAL=10 # 检查间隔(秒) +echo "Waiting 90 seconds..." +sleep 90 + +if grep -q "Failed to launch worker processes" server.log; then + echo "Failed to launch worker processes..." + stop_processes + cat server.log + cat log/workerlog.0 + exit 1 +fi + +if grep -q "Traceback (most recent call last):" server.log; then + echo "Some errors occurred..." + stop_processes + cat server.log + cat log/workerlog.0 + exit 1 +fi + +# Health check +TIMEOUT=$((11 * 60)) +INTERVAL=30 # Check interval (seconds) ENDPOINT="http://0.0.0.0:8188/health" -START_TIME=$(date +%s) # 记录开始时间戳 -echo "开始服务健康检查,最长等待时间:${TIMEOUT}秒" +START_TIME=$(date +%s) # Record the start timestamp +echo "Start the server health check, maximum waiting time: ${TIMEOUT} seconds..." while true; do - # 计算已耗时 + # Used to calculate the time cost CURRENT_TIME=$(date +%s) ELAPSED=$((CURRENT_TIME - START_TIME)) - # 超时判断 + # Timeout if [ $ELAPSED -ge $TIMEOUT ]; then - echo -e "\n服务启动超时:经过 $((TIMEOUT/60)) 分钟服务仍未启动!" + echo -e "\nServer start timeout: After $((TIMEOUT/60)) minutes, the service still doesn't start!" + stop_processes cat server.log cat log/workerlog.0 exit 1 @@ -61,7 +86,7 @@ while true; do HTTP_CODE=$(curl -s -o /dev/null -w "%{http_code}" -m 2 "$ENDPOINT" || true) if [ "$HTTP_CODE" = "200" ]; then - echo -e "\n服务启动成功!耗时 ${ELAPSED} 秒" + echo -e "\nThe server was successfully launched! Totally takes $((ELAPSED+90)) seconds." break else sleep $INTERVAL @@ -69,18 +94,19 @@ while true; do done cat server.log +echo -e "\n" -# 执行服务化推理 +echo "Start inference..." python test/ci_use/GCU/run_ernie.py exit_code=$? -echo exit_code is ${exit_code} +echo -e "exit_code is ${exit_code}.\n" -ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true -ps -efww | grep -E '8188' | grep -v grep | awk '{print $2}' | xargs kill -9 || true -lsof -t -i :8188 | xargs kill -9 || true +echo "Stop server..." +stop_processes +echo "Stop server done." if [ ${exit_code} -ne 0 ]; then - echo "log/workerlog.0" + echo "Exit with error, please refer to log/workerlog.0" cat log/workerlog.0 exit 1 fi diff --git a/test/ci_use/GCU/run_ernie.py b/test/ci_use/GCU/run_ernie.py index f4e8a9ef98..ae9ac8d47a 100644 --- a/test/ci_use/GCU/run_ernie.py +++ b/test/ci_use/GCU/run_ernie.py @@ -15,10 +15,9 @@ import openai ip = "0.0.0.0" -service_http_port = "8188" # 服务配置的 +service_http_port = "8188" client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY") -# 非流式对话 response = client.chat.completions.create( model="default", messages=[ @@ -26,7 +25,14 @@ ], temperature=1, top_p=0, - max_tokens=64, + max_tokens=256, stream=False, ) -print(response) +print(f"response is: {response}", flush=True) + +generate_context = response.choices[0].message.content +print(f"\ngenerate_context is: {generate_context}", flush=True) + +assert "pacific ocean" in generate_context.lower(), "The answer was incorrect!" + +print("Test successfully!", flush=True)