@@ -303,7 +303,8 @@ using Aqua: Aqua
303
303
@test isempty (RootedTrees. subtrees (t1))
304
304
@test butcher_representation (empty (t1)) == " ∅"
305
305
@test RootedTrees. latexify (empty (t1)) == " \\ varnothing"
306
- @test elementary_differential (t1) == L " $f$"
306
+ @test elementary_differential_latexstring (t1) == L " $f$"
307
+ @test elementary_weight_latexstring (t1) == L " $\s um_{d}b_{d}$"
307
308
308
309
@inferred order (t1)
309
310
@inferred σ (t1)
@@ -324,7 +325,8 @@ using Aqua: Aqua
324
325
@test RootedTrees. latexify (t2) == latex_string
325
326
@test latexify (t2) == latex_string
326
327
@test RootedTrees. subtrees (t2) == [rootedtree ([2 ])]
327
- @test elementary_differential (t2) == L " $f^{\p rime}f$"
328
+ @test elementary_differential_latexstring (t2) == L " $f^{\p rime}f$"
329
+ @test elementary_weight_latexstring (t2) == L " $\s um_{d}b_{d}c_{d}$"
328
330
329
331
t3 = rootedtree ([1 , 2 , 2 ])
330
332
@test order (t3) == 3
@@ -338,7 +340,8 @@ using Aqua: Aqua
338
340
@test RootedTrees. latexify (t3) == latex_string
339
341
@test latexify (t3) == latex_string
340
342
@test RootedTrees. subtrees (t3) == [rootedtree ([2 ]), rootedtree ([2 ])]
341
- @test elementary_differential (t3) == L " $f^{\p rime\p rime}(f, f)$"
343
+ @test elementary_differential_latexstring (t3) == L " $f^{\p rime\p rime}(f, f)$"
344
+ @test elementary_weight_latexstring (t3) == L " $\s um_{d}b_{d}c_{d}^{2}$"
342
345
343
346
t4 = rootedtree ([1 , 2 , 3 ])
344
347
@test order (t4) == 3
@@ -352,7 +355,8 @@ using Aqua: Aqua
352
355
@test RootedTrees. latexify (t4) == latex_string
353
356
@test latexify (t4) == latex_string
354
357
@test RootedTrees. subtrees (t4) == [rootedtree ([2 , 3 ])]
355
- @test elementary_differential (t4) == L " $f^{\p rime}f^{\p rime}f$"
358
+ @test elementary_differential_latexstring (t4) == L " $f^{\p rime}f^{\p rime}f$"
359
+ @test elementary_weight_latexstring (t4) == L " $\s um_{d, e}b_{d}a_{d,e}c_{e}$"
356
360
357
361
t5 = rootedtree ([1 , 2 , 2 , 2 ])
358
362
@test order (t5) == 4
@@ -364,7 +368,9 @@ using Aqua: Aqua
364
368
@test butcher_representation (t5) == " [τ³]"
365
369
@test RootedTrees. subtrees (t5) ==
366
370
[rootedtree ([2 ]), rootedtree ([2 ]), rootedtree ([2 ])]
367
- @test elementary_differential (t5) == L " $f^{\p rime\p rime\p rime}(f, f, f)$"
371
+ @test elementary_differential_latexstring (t5) ==
372
+ L " $f^{\p rime\p rime\p rime}(f, f, f)$"
373
+ @test elementary_weight_latexstring (t5) == L " $\s um_{d}b_{d}c_{d}^{3}$"
368
374
369
375
t6 = rootedtree ([1 , 2 , 2 , 3 ])
370
376
@inferred RootedTrees. subtrees (t6)
@@ -376,7 +382,10 @@ using Aqua: Aqua
376
382
@test t6 == t2 ∘ t2 == t4 ∘ t1
377
383
@test butcher_representation (t6) == " [[τ]τ]"
378
384
@test RootedTrees. subtrees (t6) == [rootedtree ([2 , 3 ]), rootedtree ([2 ])]
379
- @test elementary_differential (t6) == L " $f^{\p rime\p rime}(f^{\p rime}f, f)$"
385
+ @test elementary_differential_latexstring (t6) ==
386
+ L " $f^{\p rime\p rime}(f^{\p rime}f, f)$"
387
+ @test elementary_weight_latexstring (t6) ==
388
+ L " $\s um_{d, e}b_{d}a_{d,e}c_{e}c_{d}$"
380
389
381
390
t7 = rootedtree ([1 , 2 , 3 , 3 ])
382
391
@test order (t7) == 4
@@ -385,7 +394,9 @@ using Aqua: Aqua
385
394
@test β (t7) == α (t7) * γ (t7)
386
395
@test t7 == t1 ∘ t3
387
396
@test butcher_representation (t7) == " [[τ²]]"
388
- @test elementary_differential (t7) == L " $f^{\p rime}f^{\p rime\p rime}(f, f)$"
397
+ @test elementary_differential_latexstring (t7) ==
398
+ L " $f^{\p rime}f^{\p rime\p rime}(f, f)$"
399
+ @test elementary_weight_latexstring (t7) == L " $\s um_{d, e}b_{d}a_{d,e}c_{e}^{2}$"
389
400
390
401
t8 = rootedtree ([1 , 2 , 3 , 4 ])
391
402
@test order (t8) == 4
@@ -394,7 +405,10 @@ using Aqua: Aqua
394
405
@test α (t8) == 1
395
406
@test t8 == t1 ∘ t4
396
407
@test butcher_representation (t8) == " [[[τ]]]"
397
- @test elementary_differential (t8) == L " $f^{\p rime}f^{\p rime}f^{\p rime}f$"
408
+ @test elementary_differential_latexstring (t8) ==
409
+ L " $f^{\p rime}f^{\p rime}f^{\p rime}f$"
410
+ @test elementary_weight_latexstring (t8) ==
411
+ L " $\s um_{d, e, f}b_{d}a_{d,e}a_{e,f}c_{f}$"
398
412
399
413
t9 = rootedtree ([1 , 2 , 2 , 2 , 2 ])
400
414
@test order (t9) == 5
@@ -404,7 +418,8 @@ using Aqua: Aqua
404
418
@test β (t9) == α (t9) * γ (t9)
405
419
@test t9 == t5 ∘ t1
406
420
@test butcher_representation (t9) == " [τ⁴]"
407
- @test elementary_differential (t9) == L " $f^{(4)}(f, f, f, f)$"
421
+ @test elementary_differential_latexstring (t9) == L " $f^{(4)}(f, f, f, f)$"
422
+ @test elementary_weight_latexstring (t9) == L " $\s um_{d}b_{d}c_{d}^{4}$"
408
423
409
424
t10 = rootedtree ([1 , 2 , 2 , 2 , 3 ])
410
425
@test order (t10) == 5
@@ -414,8 +429,10 @@ using Aqua: Aqua
414
429
@test β (t10) == α (t10) * γ (t10)
415
430
@test t10 == t3 ∘ t2 == t6 ∘ t1
416
431
@test butcher_representation (t10) == " [[τ]τ²]"
417
- @test elementary_differential (t10) ==
432
+ @test elementary_differential_latexstring (t10) ==
418
433
L " $f^{\p rime\p rime\p rime}(f^{\p rime}f, f, f)$"
434
+ @test elementary_weight_latexstring (t10) ==
435
+ L " $\s um_{d, e}b_{d}a_{d,e}c_{e}c_{d}^{2}$"
419
436
420
437
t11 = rootedtree ([1 , 2 , 2 , 3 , 3 ])
421
438
@test order (t11) == 5
@@ -424,8 +441,10 @@ using Aqua: Aqua
424
441
@test α (t11) == 4
425
442
@test t11 == t2 ∘ t3 == t7 ∘ t1
426
443
@test butcher_representation (t11) == " [[τ²]τ]"
427
- @test elementary_differential (t11) ==
444
+ @test elementary_differential_latexstring (t11) ==
428
445
L " $f^{\p rime\p rime}(f^{\p rime\p rime}(f, f), f)$"
446
+ @test elementary_weight_latexstring (t11) ==
447
+ L " $\s um_{d, e}b_{d}a_{d,e}c_{e}^{2}c_{d}$"
429
448
430
449
t12 = rootedtree ([1 , 2 , 2 , 3 , 4 ])
431
450
@test order (t12) == 5
@@ -435,8 +454,10 @@ using Aqua: Aqua
435
454
@test β (t12) == α (t12) * γ (t12)
436
455
@test t12 == t2 ∘ t4 == t8 ∘ t1
437
456
@test butcher_representation (t12) == " [[[τ]]τ]"
438
- @test elementary_differential (t12) ==
457
+ @test elementary_differential_latexstring (t12) ==
439
458
L " $f^{\p rime\p rime}(f^{\p rime}f^{\p rime}f, f)$"
459
+ @test elementary_weight_latexstring (t12) ==
460
+ L " $\s um_{d, e, f}b_{d}a_{d,e}a_{e,f}c_{f}c_{d}$"
440
461
441
462
t13 = rootedtree ([1 , 2 , 3 , 2 , 3 ])
442
463
@test order (t13) == 5
@@ -446,8 +467,10 @@ using Aqua: Aqua
446
467
@test β (t13) == α (t13) * γ (t13)
447
468
@test t13 == t4 ∘ t2
448
469
@test butcher_representation (t13) == " [[τ][τ]]"
449
- @test elementary_differential (t13) ==
470
+ @test elementary_differential_latexstring (t13) ==
450
471
L " $f^{\p rime\p rime}(f^{\p rime}f, f^{\p rime}f)$"
472
+ @test elementary_weight_latexstring (t13) ==
473
+ L " $\s um_{d, e}b_{d}(a_{d,e}c_{e})^{2}$"
451
474
452
475
t14 = rootedtree ([1 , 2 , 3 , 3 , 3 ])
453
476
@test order (t14) == 5
@@ -457,8 +480,10 @@ using Aqua: Aqua
457
480
@test β (t14) == α (t14) * γ (t14)
458
481
@test t14 == t1 ∘ t5
459
482
@test butcher_representation (t14) == " [[τ³]]"
460
- @test elementary_differential (t14) ==
483
+ @test elementary_differential_latexstring (t14) ==
461
484
L " $f^{\p rime}f^{\p rime\p rime\p rime}(f, f, f)$"
485
+ @test elementary_weight_latexstring (t14) ==
486
+ L " $\s um_{d, e}b_{d}a_{d,e}c_{e}^{3}$"
462
487
463
488
t15 = rootedtree ([1 , 2 , 3 , 3 , 4 ])
464
489
@test order (t15) == 5
@@ -468,8 +493,10 @@ using Aqua: Aqua
468
493
@test β (t15) == α (t15) * γ (t15)
469
494
@test t15 == t1 ∘ t6
470
495
@test butcher_representation (t15) == " [[[τ]τ]]"
471
- @test elementary_differential (t15) ==
496
+ @test elementary_differential_latexstring (t15) ==
472
497
L " $f^{\p rime}f^{\p rime\p rime}(f^{\p rime}f, f)$"
498
+ @test elementary_weight_latexstring (t15) ==
499
+ L " $\s um_{d, e, f}b_{d}a_{d,e}a_{e,f}c_{f}c_{e}$"
473
500
474
501
t16 = rootedtree ([1 , 2 , 3 , 4 , 4 ])
475
502
@test order (t16) == 5
@@ -479,8 +506,10 @@ using Aqua: Aqua
479
506
@test β (t16) == α (t16) * γ (t16)
480
507
@test t16 == t1 ∘ t7
481
508
@test butcher_representation (t16) == " [[[τ²]]]"
482
- @test elementary_differential (t16) ==
509
+ @test elementary_differential_latexstring (t16) ==
483
510
L " $f^{\p rime}f^{\p rime}f^{\p rime\p rime}(f, f)$"
511
+ @test elementary_weight_latexstring (t16) ==
512
+ L " $\s um_{d, e, f}b_{d}a_{d,e}a_{e,f}c_{f}^{2}$"
484
513
485
514
t17 = rootedtree ([1 , 2 , 3 , 4 , 5 ])
486
515
@test order (t17) == 5
@@ -490,8 +519,20 @@ using Aqua: Aqua
490
519
@test β (t17) == α (t17) * γ (t17)
491
520
@test t17 == t1 ∘ t8
492
521
@test butcher_representation (t17) == " [[[[τ]]]]"
493
- @test elementary_differential (t17) ==
522
+ @test elementary_differential_latexstring (t17) ==
494
523
L " $f^{\p rime}f^{\p rime}f^{\p rime}f^{\p rime}f$"
524
+ @test elementary_weight_latexstring (t17) ==
525
+ L " $\s um_{d, e, f, g}b_{d}a_{d,e}a_{e,f}a_{f,g}c_{g}$"
526
+
527
+ # test elementary_weight_latexstring which needs more than 23 indices
528
+
529
+ t18 = rootedtree (collect (1 : 25 ))
530
+ @test elementary_weight_latexstring (t18) ==
531
+ L " $\s um_{d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, p1, q1, r1, s1, t1, u1, v1, w1, x1, y1, z1, d2}b_{d1}a_{d1,e1}a_{e1,f1}a_{f1,g1}a_{g1,h1}a_{h1,i1}a_{i1,j1}a_{j1,k1}a_{k1,l1}a_{l1,m1}a_{m1,n1}a_{n1,o1}a_{o1,p1}a_{p1,q1}a_{q1,r1}a_{r1,s1}a_{s1,t1}a_{t1,u1}a_{u1,v1}a_{v1,w1}a_{w1,x1}a_{x1,y1}a_{y1,z1}a_{z1,d2}c_{d2}$"
532
+
533
+ t19 = rootedtree ([1 , 2 , 2 , 3 , 2 , 3 ])
534
+ @test elementary_weight_latexstring (t19) ==
535
+ L " $\s um_{d, e}b_{d}(a_{d,e}c_{e})^{2}c_{d}$"
495
536
496
537
# test non-canonical representation
497
538
level_sequence = [1 , 2 , 3 , 2 , 3 , 4 , 2 , 3 , 2 , 3 , 4 , 5 , 6 , 2 , 3 , 4 ]
0 commit comments