@@ -7,6 +7,8 @@ using RootedTrees.Latexify: latexify
7
7
using Plots: Plots, plot
8
8
Plots. unicodeplots ()
9
9
10
+ using LaTeXStrings: @L_str
11
+
10
12
using Aqua: Aqua
11
13
12
14
@testset " RootedTrees" begin
@@ -301,6 +303,7 @@ using Aqua: Aqua
301
303
@test isempty (RootedTrees. subtrees (t1))
302
304
@test butcher_representation (empty (t1)) == " ∅"
303
305
@test RootedTrees. latexify (empty (t1)) == " \\ varnothing"
306
+ @test elementary_differential (t1) == L " $f$"
304
307
305
308
@inferred order (t1)
306
309
@inferred σ (t1)
@@ -321,6 +324,7 @@ using Aqua: Aqua
321
324
@test RootedTrees. latexify (t2) == latex_string
322
325
@test latexify (t2) == latex_string
323
326
@test RootedTrees. subtrees (t2) == [rootedtree ([2 ])]
327
+ @test elementary_differential (t2) == L " $f^{\p rime}f$"
324
328
325
329
t3 = rootedtree ([1 , 2 , 2 ])
326
330
@test order (t3) == 3
@@ -334,6 +338,7 @@ using Aqua: Aqua
334
338
@test RootedTrees. latexify (t3) == latex_string
335
339
@test latexify (t3) == latex_string
336
340
@test RootedTrees. subtrees (t3) == [rootedtree ([2 ]), rootedtree ([2 ])]
341
+ @test elementary_differential (t3) == L " $f^{\p rime\p rime}(f, f)$"
337
342
338
343
t4 = rootedtree ([1 , 2 , 3 ])
339
344
@test order (t4) == 3
@@ -347,6 +352,7 @@ using Aqua: Aqua
347
352
@test RootedTrees. latexify (t4) == latex_string
348
353
@test latexify (t4) == latex_string
349
354
@test RootedTrees. subtrees (t4) == [rootedtree ([2 , 3 ])]
355
+ @test elementary_differential (t4) == L " $f^{\p rime}f^{\p rime}f$"
350
356
351
357
t5 = rootedtree ([1 , 2 , 2 , 2 ])
352
358
@test order (t5) == 4
@@ -358,6 +364,7 @@ using Aqua: Aqua
358
364
@test butcher_representation (t5) == " [τ³]"
359
365
@test RootedTrees. subtrees (t5) ==
360
366
[rootedtree ([2 ]), rootedtree ([2 ]), rootedtree ([2 ])]
367
+ @test elementary_differential (t5) == L " $f^{\p rime\p rime\p rime}(f, f, f)$"
361
368
362
369
t6 = rootedtree ([1 , 2 , 2 , 3 ])
363
370
@inferred RootedTrees. subtrees (t6)
@@ -369,6 +376,7 @@ using Aqua: Aqua
369
376
@test t6 == t2 ∘ t2 == t4 ∘ t1
370
377
@test butcher_representation (t6) == " [[τ]τ]"
371
378
@test RootedTrees. subtrees (t6) == [rootedtree ([2 , 3 ]), rootedtree ([2 ])]
379
+ @test elementary_differential (t6) == L " $f^{\p rime\p rime}(f^{\p rime}f, f)$"
372
380
373
381
t7 = rootedtree ([1 , 2 , 3 , 3 ])
374
382
@test order (t7) == 4
@@ -377,6 +385,7 @@ using Aqua: Aqua
377
385
@test β (t7) == α (t7) * γ (t7)
378
386
@test t7 == t1 ∘ t3
379
387
@test butcher_representation (t7) == " [[τ²]]"
388
+ @test elementary_differential (t7) == L " $f^{\p rime}f^{\p rime\p rime}(f, f)$"
380
389
381
390
t8 = rootedtree ([1 , 2 , 3 , 4 ])
382
391
@test order (t8) == 4
@@ -385,6 +394,7 @@ using Aqua: Aqua
385
394
@test α (t8) == 1
386
395
@test t8 == t1 ∘ t4
387
396
@test butcher_representation (t8) == " [[[τ]]]"
397
+ @test elementary_differential (t8) == L " $f^{\p rime}f^{\p rime}f^{\p rime}f$"
388
398
389
399
t9 = rootedtree ([1 , 2 , 2 , 2 , 2 ])
390
400
@test order (t9) == 5
@@ -394,6 +404,7 @@ using Aqua: Aqua
394
404
@test β (t9) == α (t9) * γ (t9)
395
405
@test t9 == t5 ∘ t1
396
406
@test butcher_representation (t9) == " [τ⁴]"
407
+ @test elementary_differential (t9) == L " $f^{(4)}(f, f, f, f)$"
397
408
398
409
t10 = rootedtree ([1 , 2 , 2 , 2 , 3 ])
399
410
@test order (t10) == 5
@@ -403,6 +414,8 @@ using Aqua: Aqua
403
414
@test β (t10) == α (t10) * γ (t10)
404
415
@test t10 == t3 ∘ t2 == t6 ∘ t1
405
416
@test butcher_representation (t10) == " [[τ]τ²]"
417
+ @test elementary_differential (t10) ==
418
+ L " $f^{\p rime\p rime\p rime}(f^{\p rime}f, f, f)$"
406
419
407
420
t11 = rootedtree ([1 , 2 , 2 , 3 , 3 ])
408
421
@test order (t11) == 5
@@ -411,6 +424,8 @@ using Aqua: Aqua
411
424
@test α (t11) == 4
412
425
@test t11 == t2 ∘ t3 == t7 ∘ t1
413
426
@test butcher_representation (t11) == " [[τ²]τ]"
427
+ @test elementary_differential (t11) ==
428
+ L " $f^{\p rime\p rime}(f^{\p rime\p rime}(f, f), f)$"
414
429
415
430
t12 = rootedtree ([1 , 2 , 2 , 3 , 4 ])
416
431
@test order (t12) == 5
@@ -420,6 +435,8 @@ using Aqua: Aqua
420
435
@test β (t12) == α (t12) * γ (t12)
421
436
@test t12 == t2 ∘ t4 == t8 ∘ t1
422
437
@test butcher_representation (t12) == " [[[τ]]τ]"
438
+ @test elementary_differential (t12) ==
439
+ L " $f^{\p rime\p rime}(f^{\p rime}f^{\p rime}f, f)$"
423
440
424
441
t13 = rootedtree ([1 , 2 , 3 , 2 , 3 ])
425
442
@test order (t13) == 5
@@ -429,6 +446,8 @@ using Aqua: Aqua
429
446
@test β (t13) == α (t13) * γ (t13)
430
447
@test t13 == t4 ∘ t2
431
448
@test butcher_representation (t13) == " [[τ][τ]]"
449
+ @test elementary_differential (t13) ==
450
+ L " $f^{\p rime\p rime}(f^{\p rime}f, f^{\p rime}f)$"
432
451
433
452
t14 = rootedtree ([1 , 2 , 3 , 3 , 3 ])
434
453
@test order (t14) == 5
@@ -438,6 +457,8 @@ using Aqua: Aqua
438
457
@test β (t14) == α (t14) * γ (t14)
439
458
@test t14 == t1 ∘ t5
440
459
@test butcher_representation (t14) == " [[τ³]]"
460
+ @test elementary_differential (t14) ==
461
+ L " $f^{\p rime}f^{\p rime\p rime\p rime}(f, f, f)$"
441
462
442
463
t15 = rootedtree ([1 , 2 , 3 , 3 , 4 ])
443
464
@test order (t15) == 5
@@ -447,6 +468,8 @@ using Aqua: Aqua
447
468
@test β (t15) == α (t15) * γ (t15)
448
469
@test t15 == t1 ∘ t6
449
470
@test butcher_representation (t15) == " [[[τ]τ]]"
471
+ @test elementary_differential (t15) ==
472
+ L " $f^{\p rime}f^{\p rime\p rime}(f^{\p rime}f, f)$"
450
473
451
474
t16 = rootedtree ([1 , 2 , 3 , 4 , 4 ])
452
475
@test order (t16) == 5
@@ -456,6 +479,8 @@ using Aqua: Aqua
456
479
@test β (t16) == α (t16) * γ (t16)
457
480
@test t16 == t1 ∘ t7
458
481
@test butcher_representation (t16) == " [[[τ²]]]"
482
+ @test elementary_differential (t16) ==
483
+ L " $f^{\p rime}f^{\p rime}f^{\p rime\p rime}(f, f)$"
459
484
460
485
t17 = rootedtree ([1 , 2 , 3 , 4 , 5 ])
461
486
@test order (t17) == 5
@@ -465,6 +490,8 @@ using Aqua: Aqua
465
490
@test β (t17) == α (t17) * γ (t17)
466
491
@test t17 == t1 ∘ t8
467
492
@test butcher_representation (t17) == " [[[[τ]]]]"
493
+ @test elementary_differential (t17) ==
494
+ L " $f^{\p rime}f^{\p rime}f^{\p rime}f^{\p rime}f$"
468
495
469
496
# test non-canonical representation
470
497
level_sequence = [1 , 2 , 3 , 2 , 3 , 4 , 2 , 3 , 2 , 3 , 4 , 5 , 6 , 2 , 3 , 4 ]
0 commit comments