@@ -119,55 +119,37 @@ python ./training/train_AE_AtlasNet.py --env $env --nb_primitives $nb_primitives
119
119
```
120
120
The trained models accessible [ here] ( TODO ) have the following performances, slightly better than the one reported in [ the paper] ( TODO ) . The number reported is the chamfer distance.
121
121
122
- | Method | Chamfer (2500 pts GT and 2500 pts Reconstruction) |
123
- | ---------- | --------------------- |
124
- | Autoencoder_Atlasnet_25prim | 0.0014476474650672833 |
125
- | Autoencoder_Atlasnet_1sphere | 0.0017207141972321953 |
126
- | Autoencoder_baseline | 0.001963350556556298 |
127
- | SingleViewReconstruction_Atlasnet_25prim | 0.004638490150569042 |
128
- | SingleViewReconstruction_Atlasnet_1sphere | 0.005198702077052366 |
129
- | SingleViewReconstruction_baseline | 0.0048062904884797605 |
122
+ | Method | Chamfer⁽⁰⁾ | GPU memory⁽¹⁾ | Time by epoch⁽²⁾ |
123
+ | ---------- | --------------------- | --------------------- | --------------------- |
124
+ | Autoencoder_Atlasnet_25prim | 0.0014476474650672833 | 4.1GB | 6min55s |
125
+ | Autoencoder_Atlasnet_1sphere | 0.0017207141972321953 | 3.6GB | 5min30s |
126
+ | Autoencoder_Baseline | 0.001963350556556298 | 1.9GB | 2min05s |
127
+ | SingleViewReconstruction_Atlasnet_25prim | 0.004638490150569042 | 6.8GB | 10min04s |
128
+ | SingleViewReconstruction_Atlasnet_1sphere | 0.005198702077052366 | 5.6GB | 8min16s |
129
+ | SingleViewReconstruction_Baseline | 0.0048062904884797605 | 1.7GB | 3min30s |
130
130
131
+ ⁽⁰⁾ computed between 2500 ground truth points and 2500 reconstructed points.
132
+
133
+ ⁽¹⁾ with the flag ``` --accelerated_chamfer 1 ``` .
134
+
135
+ ⁽²⁾this is only an estimate, the code is not optimised. The easiest way to enhance it would be to preload the training data to use the GPU at 100%. Time computed with the flag ``` --accelerated_chamfer 1 ``` .
131
136
132
137
#### Autoencoder : 25 learned parameterization
133
138
134
- | val_loss | 0.0014795344685297** |
135
- | ---------- | --------------------- |
136
- | watercraft | 0.00127737027906 |
137
- | monitor | 0.0016588120616 |
138
- | car | 0.00152693425022 |
139
- | couch | 0.00171516126198 |
140
- | cabinet | 0.00168296881168 |
141
- | lamp | 0.00232362473947 |
142
- | plane | 0.000833268054194 |
143
- | speaker | 0.0025417242402 |
144
- | table | 0.00149979386376 |
145
- | chair | 0.00156113364435 |
146
- | bench | 0.00120812499892 |
147
- | firearm | 0.000626943988977 |
148
- | cellphone | 0.0012117530635 |
139
+ | val_loss | watercraft | monitor | car | couch | cabinet | lamp | plane | speaker | table | chair | bench | firearm | cellphone |
140
+ | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
141
+ | 0.0014795344685297⁽³⁾ | 0.00127737027906 | 0.0016588120616 | 0.00152693425022 | 0.00171516126198 | 0.00168296881168 | 0.00232362473947 | 0.000833268054194 | 0.0025417242402 | 0.00149979386376 | 0.00156113364435 | 0.00120812499892 | 0.000626943988977 | 0.0012117530635 |
149
142
150
143
#### Single View Reconstruction : 25 learned parameterization
151
144
152
- | val_loss | 0.00400863720389** |
153
- | ---------- | -------------------- |
154
- | watercraft | 0.00336707355723 |
155
- | monitor | 0.00456469316226 |
156
- | car | 0.00306795421868 |
157
- | couch | 0.00404269965806 |
158
- | cabinet | 0.00355917039209 |
159
- | lamp | 0.0114094304694 |
160
- | plane | 0.00192791500002 |
161
- | speaker | 0.00780984506137 |
162
- | table | 0.00368373458016 |
163
- | chair | 0.00407004468516 |
164
- | bench | 0.0030023689528 |
165
- | firearm | 0.00192803189235 |
166
- | cellphone | 0.00293665724291 |
145
+ | val_loss | watercraft | monitor | car | couch | cabinet | lamp | plane | speaker | table | chair | bench | firearm | cellphone |
146
+ | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
147
+ | 0.00400863720389⁽³⁾ | 0.00336707355723 | 0.00456469316226 | 0.00306795421868 | 0.00404269965806 | 0.00355917039209 | 0.0114094304694 | 0.00192791500002 | 0.00780984506137 | 0.00368373458016 | 0.00407004468516 | 0.0030023689528 | 0.00192803189235 | 0.00293665724291 |
148
+
149
+ ⁽³⁾the number is slightly different for above because it comes from legacy code (Atlasnet v1).
167
150
168
151
* Evaluate quantitatively the reconstructed meshes : [ METRO DISTANCE] ( https://github.com/RobotLocomotion/meshConverters/tree/master/vcglib/apps/metro )
169
152
170
- ** the number is slightly different for above because it comes from legacy code (Atlasnet v1).
171
153
172
154
### Visualisation
173
155
@@ -193,12 +175,12 @@ View [this paper](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/382
193
175
194
176
| frame | Average recontruction error for SVR (x1000) : chamfer distance on input pointcloud and reconstruction of size 2500 pts|
195
177
| ---------- | -------------------- |
196
- | object-centered | 4.87 |
178
+ | object-centered | 4.87⁽⁴⁾ |
197
179
| view-centered | 4.88 |
198
180
199
-
200
181
<img src =" pictures/chair_yana.png " style =" zoom :55% " /><img src =" pictures/car_yana.png " style =" zoom :60% " />
201
182
183
+ ⁽⁴⁾ Trained with Atlasnet v2 (with learning rate scheduler : slightly better than the paper's result)
202
184
203
185
## License
204
186
0 commit comments