41
41
# '
42
42
# ' @returns A "curve_params_priors" object
43
43
# ' (a subclass of [list] with the inputs to `prep_priors()` attached
44
- # ' as [attributes] named `"used_priors"`).
44
+ # ' as [attributes] entry named `"used_priors"`), containing the following
45
+ # ' elements:
45
46
# ' - "n_params": Corresponds to the 5 parameters being estimated.
46
47
# ' - "mu.hyp": A [matrix] of hyperpriors with dimensions
47
48
# ' `max_antigens` x 5 (# of parameters), representing the mean of the
48
- # ' hyperprior distribution for each biomarker : y0, y1, t1, r, and alpha).
49
+ # ' hyperprior distribution for the five seroresponse parameters : y0, y1, t1, r, and alpha).
49
50
# ' - "prec.hyp": A three-dimensional [numeric] [array]
50
51
# ' with dimensions `max_antigens` x 5 (# of parameters),
51
52
# ' containing the precision matrices of the hyperprior distributions of
@@ -111,7 +112,6 @@ prep_priors <- function(max_antigens,
111
112
}
112
113
113
114
# Return results as a list
114
-
115
115
prepped_priors <- list (
116
116
" n_params" = n_params ,
117
117
" mu.hyp" = mu_hyp ,
@@ -121,9 +121,7 @@ prep_priors <- function(max_antigens,
121
121
" prec.logy.hyp" = prec_logy_hyp
122
122
) | >
123
123
structure(
124
- class = c(" curve_params_priors" , " list" ),
125
- " used_priors" = as.list(environment())
126
- )
124
+ class = c(" curve_params_priors" , " list" ))
127
125
# Creating two objects in a list, one will be used in run_mod and the other
128
126
# will be attached to run_mod output as an attribute.
129
127
prepped_priors <- prepped_priors | >
0 commit comments