|
1 | 1 | ---
|
2 |
| -title: "Extending the Hierarchical Model for Antibody Kinetics" |
| 2 | +title: "Modeling Correlation in Antibody Kinetics: A Hierarchical Bayesian Approach" |
3 | 3 | author: "Kwan Ho Lee"
|
4 | 4 | institute: "UC Davis"
|
5 | 5 | date: today
|
|
19 | 19 |
|
20 | 20 | ## Overview
|
21 | 21 |
|
22 |
| -- Incorporates feedback from Dr. Morrison and Dr.Aiemjoy |
23 |
| -- Focus exclusively on [@teunis2016] model |
24 |
| -- Clarifies model dynamics: growth, clearance, decay |
25 |
| -- Uses updated parameter notation: $\mu_y$, $\mu_b$, $\gamma$, $\alpha$, $\rho$ |
26 |
| -- Assumes block-diagonal covariance structure across biomarkers |
| 22 | +- Incorporates feedback from Dr. Morrison and Dr. Aiemjoy\ |
| 23 | +- Builds on [@teunis2016] framework for antibody kinetics\ |
| 24 | +- Focus on covariance structure: parameter covariance within each biomarker ($\Sigma_{P,j}$, 5×5 per biomarker) and biomarker covariance across $j$ ($\Sigma_B$, across biomarkers)\ |
| 25 | +- Uses updated parameterization: $\log(y_0)$, $\log(y_1 - y_0)$, $\log(t_1)$, $\log(\alpha)$, $\log(\rho-1)$\ |
| 26 | +- Current stage: block-diagonal covariance (independent biomarkers)\ |
| 27 | +- Planned extension: full $\Sigma_B$ to capture correlation between biomarkers |
27 | 28 |
|
28 | 29 | ------------------------------------------------------------------------
|
29 | 30 |
|
@@ -138,7 +139,7 @@ $$ {#eq-y1}
|
138 | 139 | ## Model Comparison: [@teunis2016] vs serodynamics
|
139 | 140 |
|
140 | 141 | | Component | [@teunis2016] | serodynamics |
|
141 |
| -|--------------------|-----------------------------|-----------------------| |
| 142 | +|------------------------|------------------------|------------------------| |
142 | 143 | | Pathogen ODE | $\mu_0 b(t) - c y(t)$ | $\mu_b b(t) - \gamma y(t)$ |
|
143 | 144 | | Antibody ODE (pre-$t_1$) | $\mu y(t)$ | $\mu_y y(t)$ |
|
144 | 145 | | Antibody ODE (post-$t_1$) | $- \alpha y(t)^r$ | $- \alpha y(t)^\rho$ |
|
@@ -171,12 +172,15 @@ b_{0,ij} \\
|
171 | 172 | \alpha_{ij} \\
|
172 | 173 | \rho_{ij}
|
173 | 174 | \end{bmatrix}
|
174 |
| -$$ |
| 175 | +$$ **Where:** |
175 | 176 |
|
176 |
| -**Hyperparameters – Means:** |
| 177 | +- $\theta_{ij}$: parameter vector for subject $i$, biomarker $j$\ |
| 178 | +- $\mu_j$: population-level mean vector for biomarker $j$\ |
| 179 | +- $\Sigma_{P,j} \in \mathbb{R}^{7 \times 7}$: covariance matrix **across parameters** for biomarker $j$ |
| 180 | + - Subscript $P$: denotes that this is covariance over the **P parameters**\ |
| 181 | + - Subscript $j$: indicates the biomarker index |
177 | 182 |
|
178 |
| -- $\mu_j$: population-level mean vector for biomarker $j$ |
179 |
| -- Prior on $\mu_j$: |
| 183 | +**Hyperparameters – Means:** |
180 | 184 |
|
181 | 185 | $$
|
182 | 186 | \mu_j \sim \mathcal{N}(\mu_{\text{hyp},j},\, \Omega_{\text{hyp},j})
|
|
235 | 239 | \log(\alpha_{ij}) \\
|
236 | 240 | \log(\rho_{ij} - 1)
|
237 | 241 | \end{bmatrix}
|
| 242 | +\in \mathbb{R}^5 |
238 | 243 | $$ {#eq-10}
|
239 | 244 |
|
240 | 245 | Distribution:
|
241 | 246 |
|
242 | 247 | $$
|
243 | 248 | \theta_{ij} \sim \mathcal{N}(\mu_j, \Sigma_{P,j})
|
244 |
| -$$ |
| 249 | +$$ **Where:** |
| 250 | +
|
| 251 | +- $\mu_j$: population-level mean vector for biomarker $j$\ |
| 252 | +- $\Sigma_{P,j} \in \mathbb{R}^{5 \times 5}$: covariance matrix **across the** $P=5$ parameters for biomarker $j$ |
245 | 253 |
|
246 | 254 | ------------------------------------------------------------------------
|
247 | 255 |
|
|
312 | 320 |
|
313 | 321 | **Hyperparameters:**
|
314 | 322 |
|
315 |
| -- $\mu_j$: population-level means (per biomarker $j$) |
316 |
| -- $\Sigma_j$: $5 \times 5$ covariance matrix over parameters |
| 323 | +- $\mu_j$: population-level mean vector for biomarker $j$\ |
| 324 | +- $\Sigma_{P,j} \in \mathbb{R}^{P \times P}, \; P=5$: covariance matrix **across the parameters** for biomarker $j$ |
317 | 325 |
|
318 | 326 | ------------------------------------------------------------------------
|
319 | 327 |
|
|
334 | 342 | \log(\alpha_{ij}) \\
|
335 | 343 | \log(\rho_{ij} - 1)
|
336 | 344 | \end{bmatrix},
|
337 |
| -\quad \Sigma_{P,j} \in \mathbb{R}^{5 \times 5} |
| 345 | +\quad \Sigma_{P,j} \in \mathbb{R}^{P \times P}, \; P=5 |
338 | 346 | $$
|
339 | 347 |
|
340 | 348 | Each subject $i$ has a unique 5-parameter vector per biomarker $j$, capturing individual-level variation in antibody dynamics.
|
|
371 | 379 | \Sigma_{P,j}^{-1} \sim \mathcal{W}(\Omega_j, \nu_j)
|
372 | 380 | $$
|
373 | 381 |
|
374 |
| -- $\Sigma_j$: variability/covariance in subject-level parameters |
375 |
| -- $\Omega_j$: prior scale matrix |
| 382 | +- $\Sigma_{P,j}$: $5 \times 5$ covariance matrix of subject-level parameters for biomarker $j$\ |
| 383 | +- $\Omega_j$: prior scale matrix (dimension $5 \times 5$)\ |
376 | 384 | - $\nu_j$: degrees of freedom
|
377 | 385 |
|
378 | 386 | **Example:**
|
|
404 | 412 |
|
405 | 413 | ## Matrix Algebra Computation
|
406 | 414 |
|
407 |
| -Let $P = 5$ (parameters), $J$ biomarkers. Then: |
| 415 | +Let $P = 5$ (parameters), $B$ biomarkers. Then: |
408 | 416 |
|
409 | 417 | $$
|
410 | 418 | \Theta_i =
|
|
440 | 448 |
|
441 | 449 | ## Understanding $\text{vec}(\Theta_i)$
|
442 | 450 |
|
443 |
| -Each $\theta_{ij} \in \mathbb{R}^7$: |
| 451 | +Each $\theta_{ij} \in \mathbb{R}^5$: |
444 | 452 |
|
445 | 453 | $$
|
446 | 454 | \theta_{ij} =
|
447 | 455 | \begin{bmatrix}
|
448 |
| -y_0 \\ |
449 |
| -b_0 \\ |
450 |
| -\mu_0 \\ |
451 |
| -\mu_1 \\ |
452 |
| -c \\ |
453 |
| -\alpha \\ |
454 |
| -r |
| 456 | +\log(y_{0,ij}) \\ |
| 457 | +\log(y_{1,ij} - y_{0,ij}) \\ |
| 458 | +\log(t_{1,ij}) \\ |
| 459 | +\log(\alpha_{ij}) \\ |
| 460 | +\log(\rho_{ij} - 1) |
455 | 461 | \end{bmatrix}
|
456 | 462 | $$
|
457 | 463 |
|
|
494 | 500 |
|
495 | 501 | ------------------------------------------------------------------------
|
496 | 502 |
|
497 |
| -## Example: Kronecker Product with $P=2$, $B=3$ |
| 503 | +## Example: Kronecker Product with $P = 5$, $B = 3$ |
498 | 504 |
|
499 | 505 | Let:
|
500 | 506 |
|
501 | 507 | $$
|
502 | 508 | \Sigma_P =
|
503 | 509 | \begin{bmatrix}
|
504 |
| -\sigma_{11} & \sigma_{12} \\ |
505 |
| -\sigma_{21} & \sigma_{22} |
506 |
| -\end{bmatrix},\quad |
| 510 | +\sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,t_1} & \sigma_{y_0,\alpha} & \sigma_{y_0,\rho-1} \\ |
| 511 | +\sigma_{y_1-y_0,y_0} & \sigma_{y_1-y_0,y_1-y_0} & \sigma_{y_1-y_0,t_1} & \sigma_{y_1-y_0,\alpha} & \sigma_{y_1-y_0,\rho-1} \\ |
| 512 | +\sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ |
| 513 | +\sigma_{\alpha,y_0} & \sigma_{\alpha,y_1-y_0} & \sigma_{\alpha,t_1} & \sigma_{\alpha,\alpha} & \sigma_{\alpha,\rho-1} \\ |
| 514 | +\sigma_{\rho-1,y_0} & \sigma_{\rho-1,y_1-y_0} & \sigma_{\rho-1,t_1} & \sigma_{\rho-1,\alpha} & \sigma_{\rho-1,\rho-1} |
| 515 | +\end{bmatrix}, |
| 516 | +\quad |
507 | 517 | I_B =
|
508 | 518 | \begin{bmatrix}
|
509 | 519 | 1 & 0 & 0 \\
|
|
515 | 525 | Then:
|
516 | 526 |
|
517 | 527 | $$
|
518 |
| -\Sigma_P \otimes I_B \in \mathbb{R}^{6 \times 6} |
| 528 | +\Sigma_P \otimes I_B \in \mathbb{R}^{15 \times 15} |
519 | 529 | $$
|
520 | 530 |
|
521 | 531 | ------------------------------------------------------------------------
|
|
525 | 535 | $$
|
526 | 536 | \Sigma_P \otimes I_B =
|
527 | 537 | \begin{bmatrix}
|
528 |
| -\sigma_{11} & 0 & 0 & \sigma_{12} & 0 & 0 \\ |
529 |
| -0 & \sigma_{11} & 0 & 0 & \sigma_{12} & 0 \\ |
530 |
| -0 & 0 & \sigma_{11} & 0 & 0 & \sigma_{12} \\ |
531 |
| -\sigma_{21} & 0 & 0 & \sigma_{22} & 0 & 0 \\ |
532 |
| -0 & \sigma_{21} & 0 & 0 & \sigma_{22} & 0 \\ |
533 |
| -0 & 0 & \sigma_{21} & 0 & 0 & \sigma_{22} |
| 538 | +\Sigma_P & 0 & 0 \\ |
| 539 | +0 & \Sigma_P & 0 \\ |
| 540 | +0 & 0 & \Sigma_P |
| 541 | +\end{bmatrix} |
| 542 | +\in \mathbb{R}^{15 \times 15} |
| 543 | +$$ |
| 544 | +
|
| 545 | +where each block $\Sigma_P$ is the $5 \times 5$ covariance across parameters: |
| 546 | +
|
| 547 | +$$ |
| 548 | +\Sigma_P = |
| 549 | +\begin{bmatrix} |
| 550 | +\sigma_{y_0,y_0} & \cdots & \sigma_{y_0,\rho-1} \\ |
| 551 | +\vdots & \ddots & \vdots \\ |
| 552 | +\sigma_{\rho-1,y_0} & \cdots & \sigma_{\rho-1,\rho-1} |
534 | 553 | \end{bmatrix}
|
535 | 554 | $$
|
536 | 555 |
|
|
554 | 573 |
|
555 | 574 | ## Extending to Correlated Biomarkers
|
556 | 575 |
|
557 |
| -Assume $P=3$, $B=3$ |
| 576 | +Assume $P=5$, $B=3$ |
558 | 577 |
|
559 | 578 | Define:
|
560 | 579 |
|
561 | 580 | $$
|
562 |
| -\Sigma_K = |
| 581 | +\Sigma_P = |
563 | 582 | \begin{bmatrix}
|
564 |
| -\sigma_{11} & \sigma_{12} & \sigma_{13} \\ |
565 |
| -\sigma_{21} & \sigma_{22} & \sigma_{23} \\ |
566 |
| -\sigma_{31} & \sigma_{32} & \sigma_{33} |
567 |
| -\end{bmatrix},\quad |
568 |
| -\Sigma_J = |
| 583 | +\sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,t_1} & \sigma_{y_0,\alpha} & \sigma_{y_0,\rho-1} \\ |
| 584 | +\sigma_{y_1-y_0,y_0} & \sigma_{y_1-y_0,y_1-y_0} & \sigma_{y_1-y_0,t_1} & \sigma_{y_1-y_0,\alpha} & \sigma_{y_1-y_0,\rho-1} \\ |
| 585 | +\sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ |
| 586 | +\sigma_{\alpha,y_0} & \sigma_{\alpha,y_1-y_0} & \sigma_{\alpha,t_1} & \sigma_{\alpha,\alpha} & \sigma_{\alpha,\rho-1} \\ |
| 587 | +\sigma_{\rho-1,y_0} & \sigma_{\rho-1,y_1-y_0} & \sigma_{\rho-1,t_1} & \sigma_{\rho-1,\alpha} & \sigma_{\rho-1,\rho-1} |
| 588 | +\end{bmatrix}, |
| 589 | +\quad |
| 590 | +\Sigma_B = |
569 | 591 | \begin{bmatrix}
|
570 | 592 | \tau_{11} & \tau_{12} & \tau_{13} \\
|
571 | 593 | \tau_{21} & \tau_{22} & \tau_{23} \\
|
572 | 594 | \tau_{31} & \tau_{32} & \tau_{33}
|
573 | 595 | \end{bmatrix}
|
574 | 596 | $$
|
575 | 597 |
|
| 598 | +Here: |
| 599 | +
|
| 600 | +- $\Sigma_P$: covariance across the 5 parameters (size $5 \times 5$)\ |
| 601 | +- $\Sigma_B$: covariance across the $B$ biomarkers (size $B \times B$) |
| 602 | +
|
576 | 603 | ------------------------------------------------------------------------
|
577 | 604 |
|
578 |
| -## Kronecker Product Structure: $\Sigma_K \otimes \Sigma_J$ |
| 605 | +## Kronecker Product Structure: $\Sigma_P \otimes \Sigma_B$ |
579 | 606 |
|
580 | 607 | $$
|
581 |
| -\Sigma_K \otimes \Sigma_J = |
582 |
| -\begin{bmatrix} |
583 |
| -\sigma_{11}\Sigma_J & \sigma_{12}\Sigma_J & \sigma_{13}\Sigma_J \\ |
584 |
| -\sigma_{21}\Sigma_J & \sigma_{22}\Sigma_J & \sigma_{23}\Sigma_J \\ |
585 |
| -\sigma_{31}\Sigma_J & \sigma_{32}\Sigma_J & \sigma_{33}\Sigma_J |
586 |
| -\end{bmatrix} |
| 608 | +\text{Cov}(\text{vec}(\Theta_i)) = \Sigma_P \otimes \Sigma_B |
587 | 609 | $$
|
588 | 610 |
|
589 |
| -Now biomarkers and parameters can be correlated. |
| 611 | +- $\Sigma_P$: $5 \times 5$ covariance across parameters\ |
| 612 | +- $\Sigma_B$: $B \times B$ covariance across biomarkers\ |
| 613 | +- The Kronecker product expands to a $(5B) \times (5B)$ covariance matrix\ |
| 614 | +- Not block-diagonal — allows both parameter correlations *and* cross-biomarker correlations |
590 | 615 |
|
591 | 616 | ------------------------------------------------------------------------
|
592 | 617 |
|
593 |
| -## Expanded Form: $\Sigma_K \otimes \Sigma_J$ (3x3) |
| 618 | +## Practical To-Do List (for Chapter 2) |
594 | 619 |
|
595 |
| -The $9 \times 9$ matrix contains all combinations $\sigma_{ab}\tau_{cd}$ |
| 620 | +**Model Implementation:** |
596 | 621 |
|
597 |
| -Not block-diagonal — includes cross-biomarker correlation |
| 622 | +- Define parameter covariance $\Sigma_{P,j}$ (within each biomarker $j$)\ |
| 623 | +- Define biomarker covariance $\Sigma_B$ (across biomarkers)\ |
| 624 | +- Full covariance structure: $\text{Cov}(\text{vec}(\theta_i)) = \Sigma_P \otimes \Sigma_B$\ |
| 625 | +- Priors: $\Sigma_{P,j}^{-1} \sim \mathcal{W}(\Omega_j, \nu_j)$, $\Sigma_B^{-1} \sim \mathcal{W}(\Omega_B, \nu_B)$ |
598 | 626 |
|
599 |
| ------------------------------------------------------------------------- |
| 627 | +**Simulation Study (first step):** |
600 | 628 |
|
601 |
| -## Practical To-Do List (for Chapter 2) |
| 629 | +- Generate fake longitudinal data with known $\Sigma_P$ and $\Sigma_B$\ |
| 630 | +- Fit independence model ($I_B$) vs. correlated model ($\Sigma_B$)\ |
| 631 | +- Evaluate recovery of true covariance structure |
602 | 632 |
|
603 |
| -**Model Implementation:** |
| 633 | +**Validation on Real Data (next step):** |
604 | 634 |
|
605 |
| -- Define full $\Sigma_J$ and prior: $\Sigma_J^{-1} \sim \mathcal{W}(\Psi, \nu)$\ |
606 |
| -- Implement $\Sigma_K \otimes \Sigma_J$ in JAGS |
| 635 | +- Apply to Shigella longitudinal data\ |
| 636 | +- Compare independence vs. correlated models (DIC, WAIC, posterior predictive checks)\ |
| 637 | +- Summarize implications for epidemiologic utility |
607 | 638 |
|
608 |
| -**Simulation + Validation:** |
| 639 | +**Deliverable:** |
609 | 640 |
|
610 |
| -- Simulate individuals with correlated biomarkers\ |
611 |
| -- Fit both block-diagonal and full-covariance models\ |
612 |
| -- Compare fit: DIC, WAIC, predictive checks |
| 641 | +- Simulation + model comparison documented in a vignette for the serodynamics package |
0 commit comments