|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Neural Spline Flow" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": null, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "# Import required packages\n", |
| 17 | + "import torch\n", |
| 18 | + "import numpy as np\n", |
| 19 | + "import normflow as nf\n", |
| 20 | + "\n", |
| 21 | + "from sklearn.datasets import make_moons\n", |
| 22 | + "\n", |
| 23 | + "from matplotlib import pyplot as plt\n", |
| 24 | + "\n", |
| 25 | + "from tqdm import tqdm" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": null, |
| 31 | + "metadata": { |
| 32 | + "scrolled": false |
| 33 | + }, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "# Set up model\n", |
| 37 | + "\n", |
| 38 | + "# Define flows\n", |
| 39 | + "K = 16\n", |
| 40 | + "torch.manual_seed(0)\n", |
| 41 | + "\n", |
| 42 | + "latent_size = 2\n", |
| 43 | + "hidden_units = 128\n", |
| 44 | + "hidden_layers = 2\n", |
| 45 | + "\n", |
| 46 | + "flows = []\n", |
| 47 | + "for i in range(K):\n", |
| 48 | + " flows += [nf.flows.AutoregressiveRationalQuadraticSpline(latent_size, hidden_layers, hidden_units)]\n", |
| 49 | + " flows += [nf.flows.InvertibleAffine(latent_size)]\n", |
| 50 | + "\n", |
| 51 | + "# Set prior and q0\n", |
| 52 | + "q0 = nf.distributions.DiagGaussian(2, trainable=False)\n", |
| 53 | + " \n", |
| 54 | + "# Construct flow model\n", |
| 55 | + "nfm = nf.NormalizingFlow(q0=q0, flows=flows)\n", |
| 56 | + "\n", |
| 57 | + "# Move model on GPU if available\n", |
| 58 | + "enable_cuda = True\n", |
| 59 | + "device = torch.device('cuda' if torch.cuda.is_available() and enable_cuda else 'cpu')\n", |
| 60 | + "nfm = nfm.to(device)\n", |
| 61 | + "\n", |
| 62 | + "# Initialize ActNorm\n", |
| 63 | + "x_np, _ = make_moons(2 ** 9, noise=0.1)\n", |
| 64 | + "x = torch.tensor(x_np).float().to(device)\n", |
| 65 | + "_ = nfm.log_prob(x)" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": null, |
| 71 | + "metadata": { |
| 72 | + "scrolled": false |
| 73 | + }, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "# Plot prior distribution\n", |
| 77 | + "x_np, _ = make_moons(2 ** 20, noise=0.1)\n", |
| 78 | + "plt.figure(figsize=(15, 15))\n", |
| 79 | + "plt.hist2d(x_np[:, 0], x_np[:, 1], bins=200)\n", |
| 80 | + "plt.show()\n", |
| 81 | + "\n", |
| 82 | + "# Plot initial posterior distribution\n", |
| 83 | + "grid_size = 100\n", |
| 84 | + "xx, yy = torch.meshgrid(torch.linspace(-1.5, 2.5, grid_size), torch.linspace(-2, 2, grid_size))\n", |
| 85 | + "zz = torch.cat([xx.unsqueeze(2), yy.unsqueeze(2)], 2).view(-1, 2)\n", |
| 86 | + "zz = zz.to(device)\n", |
| 87 | + "\n", |
| 88 | + "nfm.eval()\n", |
| 89 | + "log_prob = nfm.log_prob(zz).to('cpu').view(*xx.shape)\n", |
| 90 | + "nfm.train()\n", |
| 91 | + "prob = torch.exp(log_prob)\n", |
| 92 | + "prob[torch.isnan(prob)] = 0\n", |
| 93 | + "\n", |
| 94 | + "plt.figure(figsize=(15, 15))\n", |
| 95 | + "plt.pcolormesh(xx, yy, prob.data.numpy())\n", |
| 96 | + "plt.gca().set_aspect('equal', 'box')\n", |
| 97 | + "plt.show()" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "metadata": { |
| 104 | + "scrolled": false |
| 105 | + }, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "# Train model\n", |
| 109 | + "max_iter = 10000\n", |
| 110 | + "num_samples = 2 ** 9\n", |
| 111 | + "show_iter = 500\n", |
| 112 | + "\n", |
| 113 | + "\n", |
| 114 | + "loss_hist = np.array([])\n", |
| 115 | + "\n", |
| 116 | + "optimizer = torch.optim.Adam(nfm.parameters(), lr=1e-3, weight_decay=1e-5)\n", |
| 117 | + "for it in tqdm(range(max_iter)):\n", |
| 118 | + " optimizer.zero_grad()\n", |
| 119 | + " \n", |
| 120 | + " # Get training samples\n", |
| 121 | + " x_np, _ = make_moons(num_samples, noise=0.1)\n", |
| 122 | + " x = torch.tensor(x_np).float().to(device)\n", |
| 123 | + " \n", |
| 124 | + " # Compute loss\n", |
| 125 | + " loss = nfm.forward_kld(x)\n", |
| 126 | + " \n", |
| 127 | + " # Do backprop and optimizer step\n", |
| 128 | + " if ~(torch.isnan(loss) | torch.isinf(loss)):\n", |
| 129 | + " loss.backward()\n", |
| 130 | + " optimizer.step()\n", |
| 131 | + " \n", |
| 132 | + " # Make layers Lipschitz continuous\n", |
| 133 | + " nf.utils.update_lipschitz(nfm, 5)\n", |
| 134 | + " \n", |
| 135 | + " # Log loss\n", |
| 136 | + " loss_hist = np.append(loss_hist, loss.to('cpu').data.numpy())\n", |
| 137 | + " \n", |
| 138 | + " # Plot learned posterior\n", |
| 139 | + " if (it + 1) % show_iter == 0:\n", |
| 140 | + " nfm.eval()\n", |
| 141 | + " log_prob = nfm.log_prob(zz)\n", |
| 142 | + " nfm.train()\n", |
| 143 | + " prob = torch.exp(log_prob.to('cpu').view(*xx.shape))\n", |
| 144 | + " prob[torch.isnan(prob)] = 0\n", |
| 145 | + "\n", |
| 146 | + " plt.figure(figsize=(15, 15))\n", |
| 147 | + " plt.pcolormesh(xx, yy, prob.data.numpy())\n", |
| 148 | + " plt.gca().set_aspect('equal', 'box')\n", |
| 149 | + " plt.show()\n", |
| 150 | + "\n", |
| 151 | + "# Plot loss\n", |
| 152 | + "plt.figure(figsize=(10, 10))\n", |
| 153 | + "plt.plot(loss_hist, label='loss')\n", |
| 154 | + "plt.legend()\n", |
| 155 | + "plt.show()" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": null, |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [], |
| 163 | + "source": [ |
| 164 | + "# Plot learned posterior distribution\n", |
| 165 | + "nfm.eval()\n", |
| 166 | + "log_prob = nfm.log_prob(zz).to('cpu').view(*xx.shape)\n", |
| 167 | + "nfm.train()\n", |
| 168 | + "prob = torch.exp(log_prob)\n", |
| 169 | + "prob[torch.isnan(prob)] = 0\n", |
| 170 | + "\n", |
| 171 | + "plt.figure(figsize=(15, 15))\n", |
| 172 | + "plt.pcolormesh(xx, yy, prob.data.numpy())\n", |
| 173 | + "plt.gca().set_aspect('equal', 'box')\n", |
| 174 | + "plt.show()" |
| 175 | + ] |
| 176 | + } |
| 177 | + ], |
| 178 | + "metadata": { |
| 179 | + "kernelspec": { |
| 180 | + "display_name": "Python 3 (ipykernel)", |
| 181 | + "language": "python", |
| 182 | + "name": "python3" |
| 183 | + }, |
| 184 | + "language_info": { |
| 185 | + "codemirror_mode": { |
| 186 | + "name": "ipython", |
| 187 | + "version": 3 |
| 188 | + }, |
| 189 | + "file_extension": ".py", |
| 190 | + "mimetype": "text/x-python", |
| 191 | + "name": "python", |
| 192 | + "nbconvert_exporter": "python", |
| 193 | + "pygments_lexer": "ipython3", |
| 194 | + "version": "3.8.11" |
| 195 | + } |
| 196 | + }, |
| 197 | + "nbformat": 4, |
| 198 | + "nbformat_minor": 4 |
| 199 | +} |
0 commit comments