|
21 | 21 | #'
|
22 | 22 | #' @export
|
23 | 23 | #'
|
24 |
| -FateDynamic <- function(sce,global_params = list(),palantir_params = list(),cellrank_params = list(),work_dir = NULL){ |
25 |
| - ## Build Annodata object using SingleCellExperiments |
26 |
| - if(!is.null(work_dir)){setwd(work_dir)} |
27 |
| - env = environment() |
28 |
| - |
29 |
| - anndata <- reticulate::import('anndata', convert = FALSE) |
30 |
| - sc <- reticulate::import('scanpy', convert = FALSE) |
31 |
| - scv <- reticulate::import('scvelo', convert = FALSE) |
32 |
| - |
33 |
| - sce <- sce[,colSums(SummarizedExperiment::assays(sce)$spliced)>0] |
34 |
| - X <- SummarizedExperiment::assays(sce)$spliced |
35 |
| - obs <- as.data.frame(SummarizedExperiment::colData(sce)) |
36 |
| - var <- data.frame(genes = rownames(sce)) |
37 |
| - X <- X[!duplicated(var$genes),] |
38 |
| - var <- data.frame(genes = rownames(X)) |
39 |
| - rownames(var) <- rownames(X) |
40 |
| - obsm <- NULL |
41 |
| - reductions <- SingleCellExperiment::reducedDimNames(sce) |
42 |
| - if (length(reductions) > 0) { |
43 |
| - obsm <- sapply( |
44 |
| - reductions, |
45 |
| - function(name) as.matrix(SingleCellExperiment::reducedDim(sce, name)), |
46 |
| - simplify = FALSE |
47 |
| - ) |
48 |
| - names(obsm) <- paste0('X_', tolower(SingleCellExperiment::reducedDimNames(sce))) |
49 |
| - } |
50 |
| - |
51 |
| - layers <- list() |
52 |
| - for (layer in c("spliced","unspliced")) { |
53 |
| - mat <- SummarizedExperiment::assays(sce)[[layer]] |
54 |
| - mat <- mat[rownames(X),] |
55 |
| - layers[[layer]] <- Matrix::t(mat) |
56 |
| - } |
57 |
| - |
58 |
| - adata <- anndata$AnnData( |
59 |
| - X = Matrix::t(X), |
60 |
| - obs = obs, |
61 |
| - var = var, |
62 |
| - obsm = obsm, |
63 |
| - layers = layers |
64 |
| - ) |
65 |
| - |
66 |
| - adata$write("adata.h5ad") |
67 |
| - #### |
68 |
| - # input global parameters |
69 |
| - global_params <- check_global_params(global_params) |
70 |
| - list2env(global_params,env) |
71 |
| - ## check parameters |
72 |
| - palantir_params <- check_palantir_params(palantir_params) |
73 |
| - list2env(palantir_params,env) |
74 |
| - cellrank_params <- check_cellrank_params(cellrank_params) |
75 |
| - list2env(cellrank_params,env) |
| 24 | +FateDynamic <- function (sce, global_params = list(), palantir_params = list(), |
| 25 | + cellrank_params = list(), work_dir = NULL) |
| 26 | +{ |
| 27 | + if (!is.null(work_dir)) { |
| 28 | + setwd(work_dir) |
| 29 | + } |
| 30 | + env = environment() |
| 31 | + anndata <- reticulate::import("anndata", convert = FALSE) |
| 32 | + sc <- reticulate::import("scanpy", convert = FALSE) |
| 33 | + scv <- reticulate::import("scvelo", convert = FALSE) |
76 | 34 |
|
77 |
| - # input parameters |
78 |
| - writeLines(paste("Using palantir to perform cell fate analysis...",sep="")) |
79 |
| - n.cores = 8 |
80 |
| - if(is.null(palantir_params[["start_cell"]])){ |
81 |
| - if(method == "cytotrace"){ |
82 |
| - writeLines("Using CyToTRACE to identify start cell...") |
83 |
| - if (require(CytoTRACE)) { |
84 |
| - res = CytoTRACE::CytoTRACE(as.matrix(X),ncores = n.cores)$CytoTRACE |
85 |
| - res = as.matrix(res) |
86 |
| - } |
| 35 | + if ( class(sce) == "SingleCellExperiment" | class(sce) == "Seurat" ){ |
| 36 | + if ( class(sce) == "Seurat" ) sce <- as.SingleCellExperiment(sce) |
| 37 | + if ( ! ( "spliced" %in% names(assays(sce)) & "unspliced" %in% names(assays(sce)) ) ){ |
| 38 | + assaySp = "counts" |
| 39 | + assayUn = NA |
| 40 | + }else{ |
| 41 | + assaySp = "spliced" |
| 42 | + assayUn = "unspliced" |
| 43 | + } |
| 44 | + |
| 45 | + |
| 46 | + sce <- sce[, colSums(SummarizedExperiment::assays(sce)[[assaySp]]) > 0] |
| 47 | + X <- SummarizedExperiment::assays(sce)[[assaySp]] |
| 48 | + obs <- as.data.frame(SummarizedExperiment::colData(sce)) |
| 49 | + var <- data.frame(genes = rownames(sce)) |
| 50 | + X <- X[!duplicated(var$genes), ] |
| 51 | + var <- data.frame(genes = rownames(X)) |
| 52 | + rownames(var) <- rownames(X) |
| 53 | + obsm <- NULL |
| 54 | + reductions <- SingleCellExperiment::reducedDimNames(sce) |
| 55 | + |
| 56 | + if (length(reductions) > 0) { |
| 57 | + obsm <- sapply(reductions, function(name) as.matrix(SingleCellExperiment::reducedDim(sce,name)), simplify = FALSE) |
| 58 | + names(obsm) <- paste0("X_", tolower(SingleCellExperiment::reducedDimNames(sce))) |
| 59 | + } |
| 60 | + layers <- list() |
| 61 | + for (layer in c(assaySp, assayUn)) { |
| 62 | + if ( !is.na(layer) ){ |
| 63 | + mat <- SummarizedExperiment::assays(sce)[[layer]] |
| 64 | + mat <- mat[rownames(X), ] |
| 65 | + layers[[layer]] <- Matrix::t(mat) |
| 66 | + } |
| 67 | + } |
| 68 | + }else if (class(sce) == "SCseq" ) { |
| 69 | + assaySp = "counts" |
| 70 | + assayUn = NA |
| 71 | + |
| 72 | + X <- getExpData(sce,genes=rownames(sce@expdata)) |
| 73 | + |
| 74 | + obs <- data.frame(cpart= as.character(sce@cpart)) |
| 75 | + rownames(obs) <- names(sce@cpart) |
| 76 | + var <- data.frame(genes = rownames(X)) |
| 77 | + rownames(var) <- rownames(X) |
| 78 | + obsm <- NULL |
| 79 | + layers <- list() |
| 80 | + layers[[assaySp]] <- Matrix::t(X) |
87 | 81 | }
|
88 |
| - if(method == "scent"){ |
89 |
| - writeLines("Using SCENT to identify start cell...") |
90 |
| - object <- Seurat::CreateSeuratObject(X) |
91 |
| - object <- Seurat::NormalizeData(object) |
92 |
| - X_norm <- Seurat::GetAssayData(object) |
93 |
| - rm(object);gc() |
94 |
| - if(length(intersect(list.files(getwd()),"PPI.rds")) == 1){ |
95 |
| - writeLines("Find PPI object at local dictionary, Read PPI...") |
96 |
| - PPI <- readRDS("PPI.rds") |
97 |
| - }else{ |
98 |
| - PPI <- getPPI_String(X_norm,species=species) |
99 |
| - } |
100 |
| - if (require(SCENT)) { |
101 |
| - res = SCENT::CompCCAT(X_norm, PPI) |
102 |
| - } |
103 |
| - saveRDS(PPI,file="PPI.rds") |
104 |
| - res = as.matrix(res) |
105 |
| - rownames(res) <- colnames(X_norm) |
106 |
| - rm(X_norm,PPI);gc() |
| 82 | + adata <- anndata$AnnData(X = Matrix::t(X), obs = obs, var = var, obsm = obsm, layers = layers) |
| 83 | + adata$write("adata.h5ad") |
| 84 | + global_params <- check_global_params(global_params) |
| 85 | + list2env(global_params, env) |
| 86 | + palantir_params <- check_palantir_params(palantir_params) |
| 87 | + list2env(palantir_params, env) |
| 88 | + cellrank_params <- check_cellrank_params(cellrank_params) |
| 89 | + list2env(cellrank_params, env) |
| 90 | + writeLines(paste("Using palantir to perform cell fate analysis...", sep = "")) |
| 91 | + n.cores = 8 |
| 92 | + if (is.null(palantir_params[["start_cell"]])) { |
| 93 | + if (method == "cytotrace") { |
| 94 | + writeLines("Using CyToTRACE to identify start cell...") |
| 95 | + if (require(CytoTRACE)) { |
| 96 | + res = CytoTRACE::CytoTRACE(as.matrix(X), ncores = n.cores)$CytoTRACE |
| 97 | + res = as.matrix(res) |
| 98 | + } |
| 99 | + } |
| 100 | + if (method == "scent") { |
| 101 | + writeLines("Using SCENT to identify start cell...") |
| 102 | + object <- Seurat::CreateSeuratObject(X) |
| 103 | + object <- Seurat::NormalizeData(object) |
| 104 | + X_norm <- Seurat::GetAssayData(object) |
| 105 | + rm(object) |
| 106 | + gc() |
| 107 | + if (length(intersect(list.files(getwd()), "PPI.rds")) == |
| 108 | + 1) { |
| 109 | + writeLines("Find PPI object at local dictionary, Read PPI...") |
| 110 | + PPI <- readRDS("PPI.rds") |
| 111 | + } else { |
| 112 | + PPI <- getPPI_String(X_norm, species = species) |
| 113 | + } |
| 114 | + if (require(SCENT)) { |
| 115 | + res = SCENT::CompCCAT(X_norm, PPI) |
| 116 | + } |
| 117 | + saveRDS(PPI, file = "PPI.rds") |
| 118 | + res = as.matrix(res) |
| 119 | + rownames(res) <- colnames(X_norm) |
| 120 | + rm(X_norm, PPI) |
| 121 | + gc() |
| 122 | + } |
| 123 | + if (method == "markergene") { |
| 124 | + res = as.matrix(X[root_gene, ]) |
| 125 | + } |
| 126 | + start_cell = rownames(res)[which.max(res)] |
107 | 127 | }
|
108 |
| - if(method == "markergene"){ |
109 |
| - res = as.matrix(X[root_gene,]) |
| 128 | + terminalstate = terminal_state[1] |
| 129 | + if (is.null(terminalstate)) { |
| 130 | + terminalstate = "None" |
| 131 | + } else { |
| 132 | + for (i in 2:length(terminal_state)) { |
| 133 | + terminalstate = paste(terminalstate, " ", terminal_state[i], |
| 134 | + sep = "") |
| 135 | + } |
110 | 136 | }
|
111 |
| - start_cell = rownames(res)[which.max(res)] |
112 |
| - } |
113 |
| - ## terminal_state |
114 |
| - terminalstate = terminal_state[1] |
115 |
| - if(is.null(terminalstate)){ |
116 |
| - terminalstate = "None" |
117 |
| - }else{ |
118 |
| - for(i in 2:length(terminal_state)){ |
119 |
| - terminalstate = paste(terminalstate," ",terminal_state[i],sep="") |
120 |
| - } |
121 |
| - } |
122 |
| - |
123 |
| - input = "adata.h5ad" |
124 |
| - fate_predict_py = Hmisc::capitalize(tolower(as.character(fate_predict))) |
125 |
| - plot = Hmisc::capitalize(tolower(as.character(plot))) |
126 |
| - #if(is.null(cluster_label)) cluster_label = "" |
127 |
| - script = system.file("/python/FateDynamic_py.py", package = "NetID") |
128 |
| - commandLines = paste('python ',script,' -i ',input,' -m ',min_counts,' -n ',nhvgs,' -pc ',npcs,' -k ', knn, ' -pl ',"True",' -dc ',ndcs,' -r ',start_cell,' -ts ',terminalstate,' -nw ',nwps,' -mo ',mode,' -p ',plot,' -f ',fate_predict_py, ' -c ', cluster_label, ' -w ',weight_connectivities,' -nc ', ncores, ' -t ',tolerance,sep="") |
129 |
| - #reticulate::py_run_file(system.file(commandLines, package = "NetID")) |
130 |
| - system(commandLines, wait=TRUE) |
131 |
| - |
132 |
| - if(velo){ |
133 |
| - writeLines(paste("Using cellrank with ",mode," mode velocity to perform cell fate analysis...",sep="")) |
| 137 | + input = "adata.h5ad" |
| 138 | + fate_predict_py = Hmisc::capitalize(tolower(as.character(fate_predict))) |
| 139 | + plot = Hmisc::capitalize(tolower(as.character(plot))) |
134 | 140 | script = system.file("/python/FateDynamic_py.py", package = "NetID")
|
135 |
| - commandLines = paste('python ',script,' -i ',input,' -m ',min_counts,' -n ',nhvgs,' -pc ',npcs,' -k ', knn, ' -pl ',"False",' -dc ',ndcs,' -r ',start_cell, ' -ts ',terminalstate, ' -nw ',nwps,' -mo ',mode,' -p ',plot,' -f ',fate_predict_py, ' -c ', cluster_label, ' -w ',weight_connectivities,' -nc ', ncores, ' -t ',tolerance,sep="") |
136 |
| - #reticulate::py_run_file(system.file(commandLines, package = "NetID")) |
137 |
| - system(commandLines, wait=TRUE) |
138 |
| - } |
| 141 | + if ( class(sce) == "SCseq" ){ |
| 142 | + commandLines = paste("python ", script, " -i ", input, " -m ", |
| 143 | + min_counts, " -n ", nhvgs, " -pc ", npcs, " -k ", knn, |
| 144 | + " -pl ", "True", " -dc ", ndcs, " -r ", start_cell, " -ts ", |
| 145 | + terminalstate, " -nw ", nwps, " -mo ", mode, " -p ", |
| 146 | + plot, " -f ", fate_predict_py, " -c cpart", |
| 147 | + " -w ", weight_connectivities, " -nc ", ncores, " -t ", |
| 148 | + tolerance, sep = "") |
| 149 | + }else{ |
| 150 | + commandLines = paste("python ", script, " -i ", input, " -m ", |
| 151 | + min_counts, " -n ", nhvgs, " -pc ", npcs, " -k ", knn, |
| 152 | + " -pl ", "True", " -dc ", ndcs, " -r ", start_cell, " -ts ", |
| 153 | + terminalstate, " -nw ", nwps, " -mo ", mode, " -p ", |
| 154 | + plot, " -f ", fate_predict_py, " -c ", cluster_label, |
| 155 | + " -w ", weight_connectivities, " -nc ", ncores, " -t ", |
| 156 | + tolerance, sep = "") |
| 157 | + } |
| 158 | + system(commandLines, wait = TRUE) |
| 159 | + |
| 160 | + if (velo) { |
| 161 | + if (!is.na(assayUn) ){ |
| 162 | + writeLines(paste("Using cellrank with ", mode, " mode velocity to perform cell fate analysis...", sep = "")) |
| 163 | + script = system.file("/python/FateDynamic_py.py", package = "NetID") |
| 164 | + commandLines = paste("python ", script, " -i ", input, |
| 165 | + " -m ", min_counts, " -n ", nhvgs, " -pc ", npcs, |
| 166 | + " -k ", knn, " -pl ", "False", " -dc ", ndcs, " -r ", |
| 167 | + start_cell, " -ts ", terminalstate, " -nw ", nwps, |
| 168 | + " -mo ", mode, " -p ", plot, " -f ", fate_predict_py, |
| 169 | + " -c ", cluster_label, " -w ", weight_connectivities, |
| 170 | + " -nc ", ncores, " -t ", tolerance, sep = "") |
| 171 | + system(commandLines, wait = TRUE) |
| 172 | + }else{ |
| 173 | + writeLines(paste("No unspliced counts available! Falling back to Palantir...", sep = "")) |
| 174 | + } |
| 175 | + } |
139 | 176 | }
|
140 | 177 |
|
141 | 178 | getPPI_String <- function (object = NULL, species = 9606, score_threshold = 600,
|
|
0 commit comments