Skip to content

Commit e700e37

Browse files
authored
Add files via upload
1 parent b8100d7 commit e700e37

File tree

6 files changed

+63
-52
lines changed

6 files changed

+63
-52
lines changed

DESCRIPTION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,5 +16,5 @@ License: MIT + file LICENSE
1616
Encoding: UTF-8
1717
RoxygenNote: 7.3.2
1818
NeedsCompilation: no
19-
Packaged: 2024-12-15 21:33:02 UTC; weixu.wang
19+
Packaged: 2024-12-16 01:04:56 UTC; weixu.wang
2020
Depends: R (>= 3.5.0)

doc/NetID.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -195,7 +195,7 @@ dyn.out <- RunNetID(sce,
195195
velo=FALSE)
196196
```
197197

198-
We should note that the `FateDynamic` function provides a preliminary estimation of cell fate probabilities. However, accurate cell fate estimation relies on further refinements and the incorporation of prior information. If users have their own cell fate probability matrix (`fate_prob`) and `pseudotime`, they can directly plug in these values using the following function.
198+
We note that the `FateDynamic` function provides a preliminary estimation of cell fate probabilities. However, accurate cell fate estimation relies on further refinements and the incorporation of prior information. If users have their own cell fate probability matrix (`fate_prob`) and `pseudotime`, they can directly plug in these values using the following function.
199199

200200
```{r Plugin cell fate, eval=FALSE, echo=TRUE, warning=FALSE,message=FALSE}
201201
dyn.out$LineageClass <- LineageClassifer(fate_prob, maxState = 10, cut_off = 0)

inst/doc/NetID.R

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -113,6 +113,11 @@ dyn.out <- RunNetID(sce,
113113
dynamicInfer = TRUE,
114114
velo=FALSE)
115115

116+
## ----Plugin cell fate, eval=FALSE, echo=TRUE, warning=FALSE,message=FALSE-----
117+
# dyn.out$LineageClass <- LineageClassifer(fate_prob, maxState = 10, cut_off = 0)
118+
# dyn.out$pseudotime <- pseudotime
119+
# dyn.out$fate_prob <- fate_prob # cell fate probability matrix
120+
116121
## ----plot cell fate probability, eval=TRUE, echo=TRUE, warning=FALSE,message=FALSE----
117122
## load basis information
118123
dyn.out$basis <- reducedDim(sce, "PCA")[,c(1,2)]

inst/doc/NetID.Rmd

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -195,6 +195,14 @@ dyn.out <- RunNetID(sce,
195195
velo=FALSE)
196196
```
197197

198+
We note that the `FateDynamic` function provides a preliminary estimation of cell fate probabilities. However, accurate cell fate estimation relies on further refinements and the incorporation of prior information. If users have their own cell fate probability matrix (`fate_prob`) and `pseudotime`, they can directly plug in these values using the following function.
199+
200+
```{r Plugin cell fate, eval=FALSE, echo=TRUE, warning=FALSE,message=FALSE}
201+
dyn.out$LineageClass <- LineageClassifer(fate_prob, maxState = 10, cut_off = 0)
202+
dyn.out$pseudotime <- pseudotime
203+
dyn.out$fate_prob <- fate_prob # cell fate probability matrix
204+
```
205+
198206
NetID classifies the cells based on the fate probability matrix using a Gaussian Mixture Model. Next, we compute the lineage fate probability fold change to assign each cluster to a specific lineage. To visualize the cell fate probability in a PCA 2D space, the following function can be utilized:
199207

200208
```{r plot cell fate probability, eval=TRUE, echo=TRUE, warning=FALSE,message=FALSE}

inst/doc/NetID.html

Lines changed: 40 additions & 50 deletions
Large diffs are not rendered by default.

vignettes/NetID.Rmd

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -195,6 +195,14 @@ dyn.out <- RunNetID(sce,
195195
velo=FALSE)
196196
```
197197

198+
We note that the `FateDynamic` function provides a preliminary estimation of cell fate probabilities. However, accurate cell fate estimation relies on further refinements and the incorporation of prior information. If users have their own cell fate probability matrix (`fate_prob`) and `pseudotime`, they can directly plug in these values using the following function.
199+
200+
```{r Plugin cell fate, eval=FALSE, echo=TRUE, warning=FALSE,message=FALSE}
201+
dyn.out$LineageClass <- LineageClassifer(fate_prob, maxState = 10, cut_off = 0)
202+
dyn.out$pseudotime <- pseudotime
203+
dyn.out$fate_prob <- fate_prob # cell fate probability matrix
204+
```
205+
198206
NetID classifies the cells based on the fate probability matrix using a Gaussian Mixture Model. Next, we compute the lineage fate probability fold change to assign each cluster to a specific lineage. To visualize the cell fate probability in a PCA 2D space, the following function can be utilized:
199207

200208
```{r plot cell fate probability, eval=TRUE, echo=TRUE, warning=FALSE,message=FALSE}

0 commit comments

Comments
 (0)