You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+8-6Lines changed: 8 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -6,7 +6,9 @@ This tool parses log data and allows to define analysis pipelines for anomaly de
6
6
7
7
## Requirements
8
8
9
-
In order to install logdata-anomaly-miner a **Linux system** with **python >= 3.6** is required. **Debian-based** distributions are currently recommended.
9
+
In order to install logdata-anomaly-miner a **Linux system** with **python >= 3.6** is required. All **Ubuntu** and **Debian** versions that we have in the tests are currently recommended.
10
+
There is only experimental support for **Fedora**.
11
+
More specifically the tested systems include Debian Buster, Debian Bullseye, Debian Bookworm, Ubuntu 20.04, Ubuntu 22.04, Fedora (docker image fedora:latest), and RedHat (docker image redhat/ubi9).
10
12
11
13
_See [requirements.txt](https://github.com/ait-aecid/logdata-anomaly-miner/requirements.txt) for further module dependencies_
@@ -49,9 +50,10 @@ Here are some resources to read in order to get started with configurations:
49
50
50
51
Publications and talks:
51
52
52
-
* Wurzenberger M., Skopik F., Settanni G., Fiedler R. (2018): [AECID: A Self-learning Anomaly Detection Approach Based on Light-weight Log Parser Models](http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006643003860397). [4th International Conference on Information Systems Security and Privacy (ICISSP 2018)](http://www.icissp.org/), January 22-24, 2018, Funchal, Madeira - Portugal. INSTICC. \[[PDF](https://www.markuswurzenberger.com/wp-content/uploads/2020/05/2018_icissp.pdf)\]
53
-
* Wurzenberger M., Landauer M., Skopik F., Kastner W. (2019): AECID-PG: [AECID-PG: A Tree-Based Log Parser Generator To Enable Log Analysis](https://ieeexplore.ieee.org/document/8717887). [4th IEEE/IFIP International Workshop on Analytics for Network and Service Management (AnNet 2019)](https://annet2019.moogsoft.com/) in conjunction with the [IFIP/IEEE International Symposium on Integrated Network Management (IM)](https://im2019.ieee-im.org/), April 8, 2019, Washington D.C., USA. IEEE. \[[PDF](https://www.markuswurzenberger.com/wp-content/uploads/2020/05/2019_annet.pdf)\]
54
-
* Landauer M., Skopik F., Wurzenberger M., Hotwagner W., Rauber A. (2019): [A Framework for Cyber Threat Intelligence Extraction from Raw Log Data](https://ieeexplore.ieee.org/document/9006328). [International Workshop on Big Data Analytics for Cyber Threat Hunting (CyberHunt 2019)](https://securitylab.no/cyberhunt2019/) in conjunction with the [IEEE International Conference on Big Data 2019](http://bigdataieee.org/BigData2019/), December 9-12, 2019, Los Angeles, CA, USA. IEEE. \[[PDF](https://www.markuswurzenberger.com/wp-content/uploads/2020/05/2019_cyberhunt.pdf)\]
53
+
* Landauer M., Wurzenberger M., Skopik F., Hotwagner W., Höld G. (2023): [AMiner: A Modular Log Data Analysis Pipeline for Anomaly-based Intrusion Detection](https://dl.acm.org/doi/full/10.1145/3567675). [Digital Threats: Research and Practice](https://dl.acm.org/toc/dtrap/2023/4/1), Volume 4, Issue 1. March 2023, pp. 1–16, ACM. \[[PDF](https://dl.acm.org/doi/pdf/10.1145/3567675)\]
54
+
* Wurzenberger M., Skopik F., Settanni G., Fiedler R. (2018): [AECID: A Self-learning Anomaly Detection Approach Based on Light-weight Log Parser Models](http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006643003860397). [4th International Conference on Information Systems Security and Privacy (ICISSP 2018)](http://www.icissp.org/), January 22-24, 2018, Funchal, Madeira - Portugal. INSTICC. \[[PDF](https://pdfs.semanticscholar.org/cd58/8e51d7a1d7f02f95ef2127623b21e2cd02c6.pdf)\]
55
+
* Wurzenberger M., Landauer M., Skopik F., Kastner W. (2019): AECID-PG: [AECID-PG: A Tree-Based Log Parser Generator To Enable Log Analysis](https://ieeexplore.ieee.org/document/8717887). [4th IEEE/IFIP International Workshop on Analytics for Network and Service Management (AnNet 2019)](https://annet2019.moogsoft.com/) in conjunction with the [IFIP/IEEE International Symposium on Integrated Network Management (IM)](https://im2019.ieee-im.org/), April 8, 2019, Washington D.C., USA. IEEE. \[[PDF](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8717887)\]
56
+
* Landauer M., Skopik F., Wurzenberger M., Hotwagner W., Rauber A. (2019): [A Framework for Cyber Threat Intelligence Extraction from Raw Log Data](https://ieeexplore.ieee.org/document/9006328). [International Workshop on Big Data Analytics for Cyber Threat Hunting (CyberHunt 2019)](https://securitylab.no/cyberhunt2019/) in conjunction with the [IEEE International Conference on Big Data 2019](http://bigdataieee.org/BigData2019/), December 9-12, 2019, Los Angeles, CA, USA. IEEE. \[[PDF](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006328)\]
55
57
56
58
A complete list of publications can be found at [https://aecid.ait.ac.at/further-information/](https://aecid.ait.ac.at/further-information/).
0 commit comments