|
| 1 | +using DifferentialEquations |
| 2 | +using DiffEqNoiseProcess |
| 3 | +using ForwardDiff |
| 4 | +using Statistics |
| 5 | +using Distributions |
| 6 | +using Accessors |
| 7 | + |
| 8 | +# -------------------------- |
| 9 | +# Custom Ensemble Framework |
| 10 | +# -------------------------- |
| 11 | + |
| 12 | +struct CustomEnsembleProblem{P, F} |
| 13 | + base_problem::P |
| 14 | + seeds::Vector{Int64} |
| 15 | + modify::F # (base_problem, seed, index) -> new_problem |
| 16 | +end |
| 17 | + |
| 18 | +struct CustomEnsembleSolution{S} |
| 19 | + solutions::Vector{S} |
| 20 | + seeds::Vector{Int64} |
| 21 | +end |
| 22 | + |
| 23 | +function solve_custom_ensemble(prob::CustomEnsembleProblem; dt, solver=EM(), trajectories=nothing) |
| 24 | + N = trajectories === nothing ? length(prob.seeds) : trajectories |
| 25 | + seeds = length(prob.seeds) == N ? prob.seeds : collect(1:N) |
| 26 | + |
| 27 | + sols = Vector{Any}(undef, N) |
| 28 | + |
| 29 | + Threads.@threads for i in 1:N |
| 30 | + seed = seeds[i] |
| 31 | + pmod = prob.modify(prob.base_problem, seed, i) |
| 32 | + sols[i] = DifferentialEquations.solve(pmod, solver; dt=dt) |
| 33 | + end |
| 34 | + |
| 35 | + return CustomEnsembleSolution(sols, seeds) |
| 36 | +end |
| 37 | + |
| 38 | +# -------------------------- |
| 39 | +# GBM with NoiseProcess |
| 40 | +# -------------------------- |
| 41 | + |
| 42 | +function build_noise_gbm_ensemble(μ, σ, S0, tspan; seeds=nothing) |
| 43 | + T_ = typeof(σ) |
| 44 | + μ = convert(T_, μ) |
| 45 | + S0 = convert(T_, S0) |
| 46 | + t0, Tval = tspan |
| 47 | + tspan = (convert(T_, t0), convert(T_, Tval)) |
| 48 | + |
| 49 | + base_proc = GeometricBrownianMotionProcess(μ, σ, tspan[1], S0) |
| 50 | + base_prob = NoiseProblem(base_proc, tspan) |
| 51 | + |
| 52 | + N = seeds === nothing ? 100 : length(seeds) |
| 53 | + seeds = seeds === nothing ? collect(1:N) : seeds |
| 54 | + modify = (prob, seed, i) -> remake(prob; seed=seed) |
| 55 | + return CustomEnsembleProblem(base_prob, collect(seeds), modify) |
| 56 | +end |
| 57 | + |
| 58 | +# -------------------------- |
| 59 | +# Monte Carlo Param Wrapper & Lens |
| 60 | +# -------------------------- |
| 61 | + |
| 62 | +struct BSMonteCarloSetup |
| 63 | + S0::Float64 |
| 64 | + K::Float64 |
| 65 | + r::Float64 |
| 66 | + σ::Float64 |
| 67 | + T::Float64 |
| 68 | + N::Int |
| 69 | + dt::Float64 |
| 70 | +end |
| 71 | + |
| 72 | +struct EnsembleProblemLens end |
| 73 | + |
| 74 | +function (lens::EnsembleProblemLens)(p::BSMonteCarloSetup) |
| 75 | + tspan = (0.0, p.T) |
| 76 | + build_noise_gbm_ensemble(p.r, p.σ, p.S0, tspan; seeds=1:p.N) |
| 77 | +end |
| 78 | + |
| 79 | +function Accessors.set(p::BSMonteCarloSetup, ::EnsembleProblemLens, new_σ) |
| 80 | + BSMonteCarloSetup(p.S0, p.K, p.r, new_σ, p.T, p.N, p.dt) |
| 81 | +end |
| 82 | + |
| 83 | + |
| 84 | +# -------------------------- |
| 85 | +# Analytic Black-Scholes Price & Vega |
| 86 | +# -------------------------- |
| 87 | + |
| 88 | +function bs_call_price(S, K, r, σ, T) |
| 89 | + d1 = (log(S / K) + (r + 0.5 * σ^2) * T) / (σ * sqrt(T)) |
| 90 | + d2 = d1 - σ * sqrt(T) |
| 91 | + return S * cdf(Normal(), d1) - K * exp(-r * T) * cdf(Normal(), d2) |
| 92 | +end |
| 93 | + |
| 94 | +function bs_vega_analytic(S, K, r, σ, T) |
| 95 | + d1 = (log(S / K) + (r + 0.5 * σ^2) * T) / (σ * sqrt(T)) |
| 96 | + return S * sqrt(T) * pdf(Normal(), d1) |
| 97 | +end |
| 98 | + |
| 99 | +# -------------------------- |
| 100 | +# Usage Example with Lens |
| 101 | +# -------------------------- |
| 102 | + |
| 103 | +params = BSMonteCarloSetup(100.0, 100.0, 0.01, 0.2, 1.0, 10_000, 1/250) |
| 104 | +lens = EnsembleProblemLens() |
| 105 | + |
| 106 | +# Get base ensemble problem |
| 107 | +base_prob = lens(params) |
| 108 | +sol = solve_custom_ensemble(base_prob; dt=params.dt) |
| 109 | + |
| 110 | +# Get bumped ensemble by setting σ |
| 111 | +params_bumped = Accessors.set(params, lens, 0.25) |
| 112 | +bumped_prob = lens(params_bumped) |
| 113 | +sol_bumped = solve_custom_ensemble(bumped_prob; dt=params_bumped.dt) |
| 114 | + |
| 115 | +# Extract payoffs and compute price and vega |
| 116 | +payoff = x -> max(x - params.K, 0.0) |
| 117 | +payoffs_base = payoff.(map(s -> s.u[end], sol.solutions)) |
| 118 | +payoffs_bump = payoff.(map(s -> s.u[end], sol_bumped.solutions)) |
| 119 | + |
| 120 | +df = exp(-params.r * params.T) |
| 121 | +price = mean(payoffs_base) * df |
| 122 | +vega = mean(payoffs_bump .- payoffs_base) / (params_bumped.σ - params.σ) * df |
| 123 | + |
| 124 | +# Compare to analytic |
| 125 | +price_an = bs_call_price(params.S0, params.K, params.r, params.σ, params.T) |
| 126 | +vega_an = bs_vega_analytic(params.S0, params.K, params.r, params.σ, params.T) |
| 127 | + |
| 128 | +println("Monte Carlo Price: ", price) |
| 129 | +println("Analytic Price: ", price_an) |
| 130 | +println("Rel Error (Price): ", abs(price - price_an) / price_an) |
| 131 | + |
| 132 | +println("Monte Carlo Vega: ", vega) |
| 133 | +println("Analytic Vega: ", vega_an) |
| 134 | +println("Rel Error (Vega): ", abs(vega - vega_an) / vega_an) |
0 commit comments