Skip to content

Commit 27e507a

Browse files
authored
unsupervised learning
1 parent 424712e commit 27e507a

File tree

2 files changed

+13
-13
lines changed

2 files changed

+13
-13
lines changed
128 KB
Loading

machine-learning.html

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -201,7 +201,7 @@ <h2>Machine learning</h2>
201201
<div class="tooltip-container">
202202
<a href="unsupervised_learning.html">
203203
<div class="portfolio-wrap">
204-
<img src="assets/img/data-engineering/ML-rg-0.png" class="img-fluid" alt="" style="width: 65%; height: auto;">
204+
<img src="assets/img/machine-ln/unsupervised_logo.png" class="img-fluid" alt="" style="width: 65%; height: auto;">
205205
<p class="portfolio-title">3. Unsupervised Algorithms</p>
206206
</div>
207207
<div class="tooltip-text">
@@ -226,7 +226,7 @@ <h2>Machine learning</h2>
226226
<a href="Linear-reg.html">
227227
<div class="portfolio-wrap">
228228
<img src="assets/img/machine-ln/gradient-discent.png" class="img-fluid" alt="" style="width: 85%; height: auto;">
229-
<p class="portfolio-title">3. Gradient Descent Method</p>
229+
<p class="portfolio-title">4. Gradient Descent Method</p>
230230
</div>
231231
<div class="tooltip-text">
232232
An optimization technique used to minimize the loss function by iteratively adjusting model parameters in the direction of the steepest descent.
@@ -250,7 +250,7 @@ <h2>Machine learning</h2>
250250
<a href="mle.html">
251251
<div class="portfolio-wrap">
252252
<img src="assets/img/machine-ln/mle-logo.png" class="img-fluid" alt="" style="width: 85%; height: auto;">
253-
<p class="portfolio-title">4. MLE & MAP</p>
253+
<p class="portfolio-title">5. MLE & MAP</p>
254254
</div>
255255
<div class="tooltip-text">
256256
MLE (Maximum Likelihood Estimation) estimates model parameters by maximizing the likelihood function, while MAP (Maximum A Posteriori) incorporates prior distributions into parameter estimation.
@@ -274,7 +274,7 @@ <h2>Machine learning</h2>
274274
<a href="Linear-Parameter-estimation.html">
275275
<div class="portfolio-wrap">
276276
<img src="assets/img/data-engineering/Linear-reg1.png" class="img-fluid" alt="" style="width: 85%; height: auto;">
277-
<p class="portfolio-title">5. Linear Regression</p>
277+
<p class="portfolio-title">6. Linear Regression</p>
278278
</div>
279279
<div class="tooltip-text">
280280
A statistical method for modeling the relationship between a dependent variable and one or more independent variables using a linear equation.
@@ -298,7 +298,7 @@ <h2>Machine learning</h2>
298298
<a href="Polinomial-regression.html">
299299
<div class="portfolio-wrap">
300300
<img src="assets/img/machine-ln/polinomial-reg.png" class="img-fluid" alt="" style="width: 75%; height: auto;">
301-
<p class="portfolio-title">6. Polynomial Regression</p>
301+
<p class="portfolio-title">7. Polynomial Regression</p>
302302
</div>
303303
<div class="tooltip-text">
304304
An extension of linear regression that models the relationship between the dependent variable and the independent variable(s) as an nth-degree polynomial.
@@ -322,7 +322,7 @@ <h2>Machine learning</h2>
322322
<a href="Ridge-lasso-elasticnet.html">
323323
<div class="portfolio-wrap">
324324
<img src="assets/img/machine-ln/lasso-jtheta.png" class="img-fluid" alt="" style="max-width: 75%; max-height: 20%;">
325-
<p class="portfolio-title">7. Ridge-lasso-Elasticnet</p>
325+
<p class="portfolio-title">8. Ridge-lasso-Elasticnet</p>
326326
</div>
327327
<div class="tooltip-text">
328328
Techniques combining regularization methods to prevent overfitting and improve model performance.
@@ -345,7 +345,7 @@ <h2>Machine learning</h2>
345345
<a href="pca-analysis.html">
346346
<div class="portfolio-wrap">
347347
<img src="assets/img/machine-ln/pca-logo.png" class="img-fluid" alt="" style="width: 80%; height: 80%;">
348-
<p class="portfolio-title">8. PC Analysis (PCA)</p>
348+
<p class="portfolio-title">9. PC Analysis (PCA)</p>
349349
</div>
350350
<div class="tooltip-text">
351351
Principal Component Analysis is a technique for dimensionality reduction by transforming data into orthogonal components.
@@ -369,7 +369,7 @@ <h2>Machine learning</h2>
369369
<a href="classification.html">
370370
<div class="portfolio-wrap">
371371
<img src="assets/img/data-engineering/classification.png" class="img-fluid" alt="" style="width: 75%; height: auto;">
372-
<p class="portfolio-title">9. Classification Regression</p>
372+
<p class="portfolio-title">10. Classification Regression</p>
373373
</div>
374374
<div class="tooltip-text">
375375
Methods for classifying data into categories and predicting continuous values using regression techniques.
@@ -393,7 +393,7 @@ <h2>Machine learning</h2>
393393
<a href="logistic-regression.html">
394394
<div class="portfolio-wrap">
395395
<img src="assets/img/machine-ln/deep-smf.png" class="img-fluid" alt="" style="max-width: 95%; max-height: 80%;">
396-
<p class="portfolio-title">10. Logistic Regression</p>
396+
<p class="portfolio-title">11. Logistic Regression</p>
397397
</div>
398398
<div class="tooltip-text">
399399
A classification algorithm used for binary outcomes, predicting probabilities based on the logistic function.
@@ -418,7 +418,7 @@ <h2>Machine learning</h2>
418418
<a href="naive-byes.html">
419419
<div class="portfolio-wrap">
420420
<img src="assets/img/machine-ln/classification-naive-modified1.png" class="img-fluid" alt="" style="max-width: 55%; max-height: 55%;">
421-
<p class="portfolio-title">11. Naive Bayes ML</p>
421+
<p class="portfolio-title">12. Naive Bayes ML</p>
422422
</div>
423423
<div class="tooltip-text">
424424
A probabilistic classifier based on Bayes' theorem with an assumption of feature independence.
@@ -442,7 +442,7 @@ <h2>Machine learning</h2>
442442
<a href="knn.html">
443443
<div class="portfolio-wrap">
444444
<img src="assets/img/machine-ln/classification-knn1.png" class="img-fluid" alt="" style="width: 55%; height: auto;">
445-
<p class="portfolio-title">12. KNN ML</p>
445+
<p class="portfolio-title">13. KNN ML</p>
446446
</div>
447447
<div class="tooltip-text">
448448
K-Nearest Neighbors is a simple, non-parametric algorithm used for classification and regression based on proximity.
@@ -466,7 +466,7 @@ <h2>Machine learning</h2>
466466
<a href="decision-tree.html">
467467
<div class="portfolio-wrap">
468468
<img src="assets/img/machine-ln/classification-decision-tree.png" class="img-fluid" alt="" style="max-width: 80%; max-height: 70%;">
469-
<p class="portfolio-title">13. Decision Tree</p>
469+
<p class="portfolio-title">14. Decision Tree</p>
470470
</div>
471471
<div class="tooltip-text">
472472
A model that uses a tree-like graph of decisions and their possible consequences for classification and regression.
@@ -491,7 +491,7 @@ <h2>Machine learning</h2>
491491
<a href="support-vector.html">
492492
<div class="portfolio-wrap">
493493
<img src="assets/img/machine-ln/classification-svm.png" class="img-fluid" alt="" style="width: 80%; height: auto;">
494-
<p class="portfolio-title">14. Support Vector</p>
494+
<p class="portfolio-title">15. Support Vector</p>
495495
</div>
496496
<div class="tooltip-text">
497497
Support Vector Machines are used for classification and regression by finding the optimal hyperplane that maximizes the margin between classes.

0 commit comments

Comments
 (0)