Skip to content

Commit 6396987

Browse files
authored
updates
1 parent db27c5e commit 6396987

File tree

2 files changed

+26
-12
lines changed

2 files changed

+26
-12
lines changed
299 KB
Loading

machine-learning.html

Lines changed: 26 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -211,6 +211,20 @@ <h2>Machine learning</h2>
211211
</div>
212212
</div>
213213

214+
<div class="col-lg-4 col-md-6 portfolio-item filter-python">
215+
<div class="tooltip-container">
216+
<a href="reinforcement_learning.html">
217+
<div class="portfolio-wrap">
218+
<img src="assets/img/machine-ln/reinforcment_logo.png" class="img-fluid" alt="" style="width: 65%; height: auto;">
219+
<p class="portfolio-title">4. Reinforcement Learning</p>
220+
</div>
221+
<div class="tooltip-text">
222+
Agent learns to make decisions by interacting with an environment.
223+
</div>
224+
</a>
225+
</div>
226+
</div>
227+
214228
<!-- Portfolio items for 'ML' category -->
215229
<!-- <div class="col-lg-4 col-md-6 portfolio-item filter-ML">
216230
<a href="Linear-reg.html" title="An optimization technique used to minimize the loss function by iteratively adjusting model parameters in the direction of the steepest descent.">
@@ -226,7 +240,7 @@ <h2>Machine learning</h2>
226240
<a href="Linear-reg.html">
227241
<div class="portfolio-wrap">
228242
<img src="assets/img/machine-ln/gradient-discent.png" class="img-fluid" alt="" style="width: 85%; height: auto;">
229-
<p class="portfolio-title">4. Gradient Descent Method</p>
243+
<p class="portfolio-title">5. Gradient Descent Method</p>
230244
</div>
231245
<div class="tooltip-text">
232246
An optimization technique used to minimize the loss function by iteratively adjusting model parameters in the direction of the steepest descent.
@@ -250,7 +264,7 @@ <h2>Machine learning</h2>
250264
<a href="mle.html">
251265
<div class="portfolio-wrap">
252266
<img src="assets/img/machine-ln/mle-logo.png" class="img-fluid" alt="" style="width: 85%; height: auto;">
253-
<p class="portfolio-title">5. MLE & MAP</p>
267+
<p class="portfolio-title">6. MLE & MAP</p>
254268
</div>
255269
<div class="tooltip-text">
256270
MLE (Maximum Likelihood Estimation) estimates model parameters by maximizing the likelihood function, while MAP (Maximum A Posteriori) incorporates prior distributions into parameter estimation.
@@ -274,7 +288,7 @@ <h2>Machine learning</h2>
274288
<a href="Linear-Parameter-estimation.html">
275289
<div class="portfolio-wrap">
276290
<img src="assets/img/data-engineering/Linear-reg1.png" class="img-fluid" alt="" style="width: 85%; height: auto;">
277-
<p class="portfolio-title">6. Linear Regression</p>
291+
<p class="portfolio-title">7. Linear Regression</p>
278292
</div>
279293
<div class="tooltip-text">
280294
A statistical method for modeling the relationship between a dependent variable and one or more independent variables using a linear equation.
@@ -298,7 +312,7 @@ <h2>Machine learning</h2>
298312
<a href="Polinomial-regression.html">
299313
<div class="portfolio-wrap">
300314
<img src="assets/img/machine-ln/polinomial-reg.png" class="img-fluid" alt="" style="width: 75%; height: auto;">
301-
<p class="portfolio-title">7. Polynomial Regression</p>
315+
<p class="portfolio-title">8. Polynomial Regression</p>
302316
</div>
303317
<div class="tooltip-text">
304318
An extension of linear regression that models the relationship between the dependent variable and the independent variable(s) as an nth-degree polynomial.
@@ -322,7 +336,7 @@ <h2>Machine learning</h2>
322336
<a href="Ridge-lasso-elasticnet.html">
323337
<div class="portfolio-wrap">
324338
<img src="assets/img/machine-ln/lasso-jtheta.png" class="img-fluid" alt="" style="max-width: 75%; max-height: 20%;">
325-
<p class="portfolio-title">8. Ridge-lasso-Elasticnet</p>
339+
<p class="portfolio-title">9. Ridge-lasso-Elasticnet</p>
326340
</div>
327341
<div class="tooltip-text">
328342
Techniques combining regularization methods to prevent overfitting and improve model performance.
@@ -345,7 +359,7 @@ <h2>Machine learning</h2>
345359
<a href="pca-analysis.html">
346360
<div class="portfolio-wrap">
347361
<img src="assets/img/machine-ln/pca-logo.png" class="img-fluid" alt="" style="width: 80%; height: 80%;">
348-
<p class="portfolio-title">9. PC Analysis (PCA)</p>
362+
<p class="portfolio-title">10. PC Analysis (PCA)</p>
349363
</div>
350364
<div class="tooltip-text">
351365
Principal Component Analysis is a technique for dimensionality reduction by transforming data into orthogonal components.
@@ -369,7 +383,7 @@ <h2>Machine learning</h2>
369383
<a href="classification.html">
370384
<div class="portfolio-wrap">
371385
<img src="assets/img/data-engineering/classification.png" class="img-fluid" alt="" style="width: 75%; height: auto;">
372-
<p class="portfolio-title">10. Classification Regression</p>
386+
<p class="portfolio-title">11. Classification Regression</p>
373387
</div>
374388
<div class="tooltip-text">
375389
Methods for classifying data into categories and predicting continuous values using regression techniques.
@@ -393,7 +407,7 @@ <h2>Machine learning</h2>
393407
<a href="logistic-regression.html">
394408
<div class="portfolio-wrap">
395409
<img src="assets/img/machine-ln/deep-smf.png" class="img-fluid" alt="" style="max-width: 95%; max-height: 80%;">
396-
<p class="portfolio-title">11. Logistic Regression</p>
410+
<p class="portfolio-title">12. Logistic Regression</p>
397411
</div>
398412
<div class="tooltip-text">
399413
A classification algorithm used for binary outcomes, predicting probabilities based on the logistic function.
@@ -418,7 +432,7 @@ <h2>Machine learning</h2>
418432
<a href="naive-byes.html">
419433
<div class="portfolio-wrap">
420434
<img src="assets/img/machine-ln/classification-naive-modified1.png" class="img-fluid" alt="" style="max-width: 55%; max-height: 55%;">
421-
<p class="portfolio-title">12. Naive Bayes ML</p>
435+
<p class="portfolio-title">13. Naive Bayes ML</p>
422436
</div>
423437
<div class="tooltip-text">
424438
A probabilistic classifier based on Bayes' theorem with an assumption of feature independence.
@@ -442,7 +456,7 @@ <h2>Machine learning</h2>
442456
<a href="knn.html">
443457
<div class="portfolio-wrap">
444458
<img src="assets/img/machine-ln/classification-knn1.png" class="img-fluid" alt="" style="width: 55%; height: auto;">
445-
<p class="portfolio-title">13. KNN ML</p>
459+
<p class="portfolio-title">14. KNN ML</p>
446460
</div>
447461
<div class="tooltip-text">
448462
K-Nearest Neighbors is a simple, non-parametric algorithm used for classification and regression based on proximity.
@@ -466,7 +480,7 @@ <h2>Machine learning</h2>
466480
<a href="decision-tree.html">
467481
<div class="portfolio-wrap">
468482
<img src="assets/img/machine-ln/classification-decision-tree.png" class="img-fluid" alt="" style="max-width: 80%; max-height: 70%;">
469-
<p class="portfolio-title">14. Decision Tree</p>
483+
<p class="portfolio-title">15. Decision Tree</p>
470484
</div>
471485
<div class="tooltip-text">
472486
A model that uses a tree-like graph of decisions and their possible consequences for classification and regression.
@@ -491,7 +505,7 @@ <h2>Machine learning</h2>
491505
<a href="support-vector.html">
492506
<div class="portfolio-wrap">
493507
<img src="assets/img/machine-ln/classification-svm.png" class="img-fluid" alt="" style="width: 80%; height: auto;">
494-
<p class="portfolio-title">15. Support Vector</p>
508+
<p class="portfolio-title">16. Support Vector</p>
495509
</div>
496510
<div class="tooltip-text">
497511
Support Vector Machines are used for classification and regression by finding the optimal hyperplane that maximizes the margin between classes.

0 commit comments

Comments
 (0)