@@ -172,15 +172,15 @@ <h2>Introduction</h2>
172
172
< div class ="section " id ="core-idea ">
173
173
< h2 > Core Components of Reinforcement Learning:</ h2 >
174
174
< ul >
175
- < li > < strong > Agent:</ strong > The learner or decision-maker.</ li >
176
- < li > < strong > Environment:</ strong > Everything the agent interacts with.</ li >
177
- < li > < strong > State (S):</ strong > A representation of the current situation.</ li >
178
- < li > < strong > Action (A):</ strong > All possible moves the agent can take.</ li >
179
- < li > < strong > Reward (R):</ strong > A scalar feedback signal; guides the agent.</ li >
180
- < li > < strong > Policy (π):</ strong > Strategy used by the agent to decide actions.</ li >
181
- < li > < strong > Value Function (V):</ strong > Predicts future rewards.</ li >
182
- < li > < strong > Q-Function (Q):</ strong > Predicts future rewards for action-state pairs.</ li >
183
- < li > < strong > Model (optional):</ strong > Predicts the next state and reward.</ li >
175
+ < li > < strong > Agent: </ strong > The learner or decision-maker.</ li >
176
+ < li > < strong > Environment: </ strong > Everything the agent interacts with.</ li >
177
+ < li > < strong > State (S): </ strong > A representation of the current situation.</ li >
178
+ < li > < strong > Action (A): </ strong > All possible moves the agent can take.</ li >
179
+ < li > < strong > Reward (R): </ strong > A scalar feedback signal; guides the agent.</ li >
180
+ < li > < strong > Policy (π): </ strong > Strategy used by the agent to decide actions.</ li >
181
+ < li > < strong > Value Function (V): </ strong > Predicts future rewards.</ li >
182
+ < li > < strong > Q-Function (Q): </ strong > Predicts future rewards for action-state pairs.</ li >
183
+ < li > < strong > Model (optional): </ strong > Predicts the next state and reward.</ li >
184
184
</ ul >
185
185
< h3 > Types of Reinforcement Learning</ h3 >
186
186
< ol >
0 commit comments