|
1 |
| -import astropy.io.fits as fits |
2 |
| -import numpy as np |
3 |
| - |
4 |
| -speed_of_light = 299792458. #m/s |
5 |
| - |
6 |
| -def readData(filename, vis_name, pol1, pol2, filter): |
7 |
| - hdu = fits.open(filename) |
8 |
| - data = np.asfortranarray(hdu[0].data['DATA']) |
9 |
| - #reading in uvdata |
10 |
| - print("Header...") |
11 |
| - # print hdu[0].header |
12 |
| - print(hdu[0].data['DATA'].shape) |
13 |
| - no_chan = data.shape[3] |
14 |
| - no_pol = data.shape[4] |
15 |
| - |
16 |
| - re = np.array([]) |
17 |
| - im = np.array([]) |
18 |
| - sigma = np.array([]) |
19 |
| - u = np.array([]) |
20 |
| - v = np.array([]) |
21 |
| - w = np.array([]) |
22 |
| - for chan in range(no_chan): |
23 |
| - freq = hdu[0].header["CRVAL4"] + (chan - no_chan * 0.5)* hdu[0].header["CDELT4"] |
24 |
| - |
25 |
| - print(f"Loading frequency {freq} {chan}") |
26 |
| - flags1 = data[:, 0, 0, chan, pol1, 2] #I think this gives the flags.... |
27 |
| - flags2 = data[:, 0, 0, chan, pol2, 2] #I think this gives the flags.... |
28 |
| - flags = np.logical_or(np.logical_and((flags1> 0), (flags2 > 0)), not filter) |
29 |
| - print("Flagged visibilities: {}".format((~flags).sum())) |
30 |
| - #reading in weights and visibilities |
31 |
| - sigma = np.concatenate((sigma, np.sqrt((1/data[:, 0, 0, chan, pol1, 2][flags]) /2 + (1/data[:, 0, 0, chan, pol2, 2][flags]) /2))) |
32 |
| - re = np.concatenate((re, data[:, 0, 0, chan, pol1, 0][flags]/2 + data[:, 0, 0, chan, pol2, 0][flags]/2)) |
33 |
| - im = np.concatenate((im, data[:, 0, 0, chan, pol1, 1][flags]/2 + data[:, 0, 0, chan, pol2, 1][flags]/2)) |
34 |
| - print(data[:, 0, 0, chan, pol2, 2][~flags]) |
35 |
| - #reading in uv-coordinates |
36 |
| - u = np.concatenate((u, hdu[0].data['UU'][flags] * freq)) |
37 |
| - v = np.concatenate((v, hdu[0].data['VV'][flags] * freq)) |
38 |
| - w = np.concatenate((w, hdu[0].data['WW'][flags] * freq)) |
39 |
| - print("Total visibilities... ", u.shape, v.shape, w.shape, re.shape, im.shape, sigma.shape) |
40 |
| - |
41 |
| - if filter: |
42 |
| - remove_nan = np.logical_and(~np.isnan(re) , ~np.isnan(complex(0, 1) *im)) |
43 |
| - u = u[remove_nan] |
44 |
| - v = v[remove_nan] |
45 |
| - w = w[remove_nan] |
46 |
| - re = re[remove_nan] |
47 |
| - im = im[remove_nan] |
48 |
| - sigma = sigma[remove_nan] |
49 |
| - remove_zero = np.abs(re + complex(0, 1) *im) > 0 |
50 |
| - u = u[remove_zero] |
51 |
| - v = v[remove_zero] |
52 |
| - w = w[remove_zero] |
53 |
| - re = re[remove_zero] |
54 |
| - im = im[remove_zero] |
55 |
| - sigma = sigma[remove_zero] |
56 |
| - |
57 |
| - table = np.column_stack((u, v, w, re, im, sigma)) |
58 |
| - print(table[0,:], u[0], v[0], w[0], re[0], im[0], sigma[0]) |
59 |
| - print("Total visibilities... ", u.shape, v.shape, w.shape, re.shape, im.shape, sigma.shape) |
60 |
| - |
61 |
| - np.savetxt(vis_name, table, delimiter = " ") |
62 |
| - |
63 |
| -names = ["0332-391"] |
64 |
| -for name in names: |
65 |
| - uv_fits = f"{name}.uvfits" |
66 |
| - output_vis = f"{name}.vis" |
67 |
| - readData(uv_fits, output_vis, 0, 1, True) |
68 |
| - print(f"saved {name}.vis") |
| 1 | +import astropy.io.fits as fits |
| 2 | +import numpy as np |
| 3 | + |
| 4 | +do_h5 = False |
| 5 | +try: |
| 6 | + import h5py |
| 7 | + do_h5 = True |
| 8 | +except ImportError: |
| 9 | + do_h5 = False |
| 10 | + |
| 11 | +speed_of_light = 299792458. #m/s |
| 12 | + |
| 13 | +def readData(filename, vis_name, pol1, pol2, filter): |
| 14 | + hdu = fits.open(filename) |
| 15 | + data = np.asfortranarray(hdu[0].data['DATA']) |
| 16 | + #reading in uvdata |
| 17 | + print("Header...") |
| 18 | + # print hdu[0].header |
| 19 | + print(hdu[0].data['DATA'].shape) |
| 20 | + no_chan = data.shape[3] |
| 21 | + no_pol = data.shape[4] |
| 22 | + |
| 23 | + re = np.array([]) |
| 24 | + im = np.array([]) |
| 25 | + sigma = np.array([]) |
| 26 | + u = np.array([]) |
| 27 | + v = np.array([]) |
| 28 | + w = np.array([]) |
| 29 | + for chan in range(no_chan): |
| 30 | + freq = hdu[0].header["CRVAL4"] + (chan - no_chan * 0.5)* hdu[0].header["CDELT4"] |
| 31 | + |
| 32 | + print(f"Loading frequency {freq} {chan}") |
| 33 | + flags1 = data[:, 0, 0, chan, pol1, 2] #I think this gives the flags.... |
| 34 | + flags2 = data[:, 0, 0, chan, pol2, 2] #I think this gives the flags.... |
| 35 | + flags = np.logical_or(np.logical_and((flags1> 0), (flags2 > 0)), not filter) |
| 36 | + print("Flagged visibilities: {}".format((~flags).sum())) |
| 37 | + #reading in weights and visibilities |
| 38 | + sigma = np.concatenate((sigma, np.sqrt((1/data[:, 0, 0, chan, pol1, 2][flags]) /2 + (1/data[:, 0, 0, chan, pol2, 2][flags]) /2))) |
| 39 | + re = np.concatenate((re, data[:, 0, 0, chan, pol1, 0][flags]/2 + data[:, 0, 0, chan, pol2, 0][flags]/2)) |
| 40 | + im = np.concatenate((im, data[:, 0, 0, chan, pol1, 1][flags]/2 + data[:, 0, 0, chan, pol2, 1][flags]/2)) |
| 41 | + print(data[:, 0, 0, chan, pol2, 2][~flags]) |
| 42 | + #reading in uv-coordinates |
| 43 | + u = np.concatenate((u, hdu[0].data['UU'][flags] * freq)) |
| 44 | + v = np.concatenate((v, hdu[0].data['VV'][flags] * freq)) |
| 45 | + w = np.concatenate((w, hdu[0].data['WW'][flags] * freq)) |
| 46 | + print("Total visibilities... ", u.shape, v.shape, w.shape, re.shape, im.shape, sigma.shape) |
| 47 | + |
| 48 | + if filter: |
| 49 | + remove_nan = np.logical_and(~np.isnan(re) , ~np.isnan(complex(0, 1) *im)) |
| 50 | + u = u[remove_nan] |
| 51 | + v = v[remove_nan] |
| 52 | + w = w[remove_nan] |
| 53 | + re = re[remove_nan] |
| 54 | + im = im[remove_nan] |
| 55 | + sigma = sigma[remove_nan] |
| 56 | + remove_zero = np.abs(re + complex(0, 1) *im) > 0 |
| 57 | + u = u[remove_zero] |
| 58 | + v = v[remove_zero] |
| 59 | + w = w[remove_zero] |
| 60 | + re = re[remove_zero] |
| 61 | + im = im[remove_zero] |
| 62 | + sigma = sigma[remove_zero] |
| 63 | + |
| 64 | + table = np.column_stack((u, v, w, re, im, sigma)) |
| 65 | + print(table[0,:], u[0], v[0], w[0], re[0], im[0], sigma[0]) |
| 66 | + print("Total visibilities... ", u.shape, v.shape, w.shape, re.shape, im.shape, sigma.shape) |
| 67 | + |
| 68 | + if do_h5: |
| 69 | + h5_name = vis_name[:vis_name.rfind('.')] + '.h5' |
| 70 | + f = h5py.File(h5_name, 'w') |
| 71 | + f.create_dataset('u', data=u) |
| 72 | + f.create_dataset('v', data=v) |
| 73 | + f.create_dataset('w', data=w) |
| 74 | + f.create_dataset('re', data=re) |
| 75 | + f.create_dataset('im', data=im) |
| 76 | + f.create_dataset('sigma', data=sigma) |
| 77 | + f.close() |
| 78 | + print(f"saved {h5_name}") |
| 79 | + np.savetxt(vis_name, table, delimiter = " ") |
| 80 | + |
| 81 | +names = ["0332-391"] |
| 82 | +for name in names: |
| 83 | + uv_fits = f"{name}.uvfits" |
| 84 | + output_vis = f"{name}.vis" |
| 85 | + readData(uv_fits, output_vis, 0, 1, True) |
| 86 | + print(f"saved {name}.vis") |
0 commit comments