|
43 | 43 | "* [Clang 11.0.0 (clang-1100.0.33.16)] *\n",
|
44 | 44 | "* *\n",
|
45 | 45 | "* colour-science.org : *\n",
|
46 |
| - "* colour : v0.3.15-132-g8ed24e8e *\n", |
| 46 | + "* colour : v0.3.15-141-g3bebd7e9 *\n", |
47 | 47 | "* *\n",
|
48 | 48 | "* Runtime : *\n",
|
49 | 49 | "* imageio : 2.8.0 *\n",
|
|
128 | 128 | {
|
129 | 129 | "data": {
|
130 | 130 | "application/vnd.jupyter.widget-view+json": {
|
131 |
| - "model_id": "2b308d2eb0af46088af0942ed25426fc", |
| 131 | + "model_id": "0682438225404555bcfc31ffbf717986", |
132 | 132 | "version_major": 2,
|
133 | 133 | "version_minor": 0
|
134 | 134 | },
|
|
197 | 197 | {
|
198 | 198 | "data": {
|
199 | 199 | "application/vnd.jupyter.widget-view+json": {
|
200 |
| - "model_id": "444b6201127a401283c81573e1c28c86", |
| 200 | + "model_id": "5026406f51784d0887ab0f01eeec1781", |
201 | 201 | "version_major": 2,
|
202 | 202 | "version_minor": 0
|
203 | 203 | },
|
|
210 | 210 | }
|
211 | 211 | ],
|
212 | 212 | "source": [
|
213 |
| - "X, A, I = 1.2, 0.8, 1\n", |
| 213 | + "X, A, I = 65504, 0.8, 1\n", |
214 | 214 | "\n",
|
215 | 215 | "figure, axes = colour.plotting.plot_multi_functions(\n",
|
216 | 216 | " {\n",
|
|
221 | 221 | " },\n",
|
222 | 222 | " **{\n",
|
223 | 223 | " 'standalone': False,\n",
|
| 224 | + " 'bounding_box': [0, 2, 0, 2],\n", |
224 | 225 | " 'samples':\n",
|
225 | 226 | " np.linspace(0, 2, 1000),\n",
|
226 | 227 | " 'plot_kwargs': [\n",
|
|
236 | 237 | "\n",
|
237 | 238 | "axes.scatter(X, I, c='b', s=50, zorder=4);"
|
238 | 239 | ]
|
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 6, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stdout", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "[1, 1.0009766, 1.0019531, 1.0029297, 1.0039062, 1.0048828, 1.0058594, 1.0068359, 1.0078125, 1.0087891]\n" |
| 251 | + ] |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "HFD = [1]\n", |
| 256 | + "\n", |
| 257 | + "while True:\n", |
| 258 | + " HFD.append(np.nextafter(HFD[-1], +np.inf, dtype=np.float16))\n", |
| 259 | + " if HFD[-1] > 65504:\n", |
| 260 | + " break\n", |
| 261 | + "\n", |
| 262 | + "print(HFD[:10])" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": 7, |
| 268 | + "metadata": {}, |
| 269 | + "outputs": [ |
| 270 | + { |
| 271 | + "name": "stdout", |
| 272 | + "output_type": "stream", |
| 273 | + "text": [ |
| 274 | + "[ Threshold 0.0 ]\n", |
| 275 | + "tanh 6.58594\n", |
| 276 | + "atan 7376.0\n", |
| 277 | + "simple 23168.0\n", |
| 278 | + "\n", |
| 279 | + "\n", |
| 280 | + "[ Threshold 0.1 ]\n", |
| 281 | + "tanh 6.02734\n", |
| 282 | + "atan 6636.0\n", |
| 283 | + "simple 14744.0\n", |
| 284 | + "\n", |
| 285 | + "\n", |
| 286 | + "[ Threshold 0.2 ]\n", |
| 287 | + "tanh 5.46875\n", |
| 288 | + "atan 5900.0\n", |
| 289 | + "simple 13104.0\n", |
| 290 | + "\n", |
| 291 | + "\n", |
| 292 | + "[ Threshold 0.3 ]\n", |
| 293 | + "tanh 4.91016\n", |
| 294 | + "atan 3650.0\n", |
| 295 | + "simple 8108.0\n", |
| 296 | + "\n", |
| 297 | + "\n", |
| 298 | + "[ Threshold 0.4 ]\n", |
| 299 | + "tanh 4.35156\n", |
| 300 | + "atan 3130.0\n", |
| 301 | + "simple 6952.0\n", |
| 302 | + "\n", |
| 303 | + "\n", |
| 304 | + "[ Threshold 0.5 ]\n", |
| 305 | + "tanh 3.61914\n", |
| 306 | + "atan 1844.0\n", |
| 307 | + "simple 5792.0\n", |
| 308 | + "\n", |
| 309 | + "\n", |
| 310 | + "[ Threshold 0.6 ]\n", |
| 311 | + "tanh 3.0957\n", |
| 312 | + "atan 1476.0\n", |
| 313 | + "simple 3278.0\n", |
| 314 | + "\n", |
| 315 | + "\n", |
| 316 | + "[ Threshold 0.7 ]\n", |
| 317 | + "tanh 2.57227\n", |
| 318 | + "atan 783.0\n", |
| 319 | + "simple 1738.0\n", |
| 320 | + "\n", |
| 321 | + "\n", |
| 322 | + "[ Threshold 0.8 ]\n", |
| 323 | + "tanh 1.97852\n", |
| 324 | + "atan 369.5\n", |
| 325 | + "simple 820.0\n", |
| 326 | + "\n", |
| 327 | + "\n", |
| 328 | + "[ Threshold 0.9 ]\n", |
| 329 | + "tanh 1.48926\n", |
| 330 | + "atan 93.0625\n", |
| 331 | + "simple 205.625\n", |
| 332 | + "\n", |
| 333 | + "\n", |
| 334 | + "[ Threshold 1.0 ]\n", |
| 335 | + "tanh 1\n", |
| 336 | + "atan 1\n", |
| 337 | + "simple 1\n", |
| 338 | + "\n", |
| 339 | + "\n" |
| 340 | + ] |
| 341 | + } |
| 342 | + ], |
| 343 | + "source": [ |
| 344 | + "for t in np.linspace(0, 1, 11):\n", |
| 345 | + " print(f'[ Threshold {np.around(t, 1)} ]')\n", |
| 346 | + " for func in (tanh_compression_function, atan_compression_function, simple_compression_function):\n", |
| 347 | + " print(func.__name__.split('_')[0],\n", |
| 348 | + " HFD[np.argmax((func(HFD[:-1], t, 1 - t) - func(HFD[1:], t, 1 - t)).astype(np.float16))])\n", |
| 349 | + " print('\\n')" |
| 350 | + ] |
239 | 351 | }
|
240 | 352 | ],
|
241 | 353 | "metadata": {
|
|
0 commit comments