|
5 | 5 | 
|
6 | 6 | 
|
7 | 7 |
|
8 |
| - |
9 |
| -FigurateNum is a set of 235 **figurate number generators** based on the book [Figurate Numbers (2012)](https://books.google.com.pe/books/about/Figurate_Numbers.html?id=cDxYdstLPz4C&redir_esc=y) by Michel Deza and Elena Deza. |
| 8 | +**FigurateNum** is a collection of **233 figurate number generators** based on the book |
| 9 | +> [Figurate Numbers](https://books.google.com.pe/books/about/Figurate_Numbers.html?id=cDxYdstLPz4C&redir_esc=y) by Michel Deza and Elena Deza, published in 2012. |
10 | 10 |
|
11 | 11 | FigurateNum generates the following types of **infinite sequences**:
|
12 | 12 |
|
@@ -320,6 +320,112 @@ array('d', [1.0, 19.0, 70.0, 170.0, 335.0])
|
320 | 320 | 67. `generalized_k_dimensional_centered_hypercube_numbers(k, start_num = 0)`
|
321 | 321 | 68. `generalized_nexus_numbers(start_num = 0)`
|
322 | 322 |
|
| 323 | +## Errata for *Figurate Numbers (2012)* |
| 324 | + |
| 325 | +This section lists the errata and corrections for the book *Figurate Numbers (2012)* by Michel Deza and Elena Deza. If you find any errors in the content, please feel free to contribute corrections. |
| 326 | + |
| 327 | +- Chapter 1, formula in the table on page 6 says: |
| 328 | + |
| 329 | + | Name | Formula | | |
| 330 | + | ------ | ------------------- | --- | |
| 331 | + | Square | `1/2 (n^2 - 0 * n)` | | |
| 332 | + |
| 333 | + |
| 334 | + It should be: |
| 335 | + | Name | Formula | | |
| 336 | + | ------ | -------------------- | --- | |
| 337 | + | Square | `1/2 (2n^2 - 0 * n)` | | |
| 338 | + |
| 339 | +- Chapter 1, formula in the table on page 51 says: |
| 340 | + |
| 341 | + | Name | Formula | | |
| 342 | + | -------------------- | --------------------- | --------------------- | |
| 343 | + | Cent. icosihexagonal | `1/3n^2 - 13 * n + 1` | `546, 728, 936, 1170` | |
| 344 | + |
| 345 | + |
| 346 | + It should be: |
| 347 | + | Name | Formula | | |
| 348 | + | -------------------- | --------------------- | --------------------- | |
| 349 | + | Cent. icosihexagonal | `1/3n^2 - 13 * n + 1` | `547, 729, 937, 1171` | |
| 350 | + |
| 351 | +- Chapter 1, formula in the table on page 51 says: |
| 352 | + |
| 353 | + | Name | Formula | | |
| 354 | + | --------------------- | ------- | ----- | |
| 355 | + | Cent. icosiheptagonal | | `972` | |
| 356 | + |
| 357 | + |
| 358 | + It should be: |
| 359 | + | Name | Formula | | |
| 360 | + | --------------------- | ------- | ----- | |
| 361 | + | Cent. icosiheptagonal | | `973` | |
| 362 | + |
| 363 | +- Chapter 1, formula in the table on page 51 says: |
| 364 | + |
| 365 | + | Name | Formula | | |
| 366 | + | -------------------- | ------- | ---- | |
| 367 | + | Cent. icosioctagonal | | `84` | |
| 368 | + |
| 369 | + |
| 370 | + It should be: |
| 371 | + | Name | Formula | | |
| 372 | + | -------------------- | ------- | ---- | |
| 373 | + | Cent. icosioctagonal | | `85` | |
| 374 | + |
| 375 | +- Chapter 1, page 65 (polite numbers) says: |
| 376 | + > `inpolite numbers` |
| 377 | +
|
| 378 | + It should read: |
| 379 | + |
| 380 | + > `impolite numbers` |
| 381 | +
|
| 382 | +- Chapter 1, formula (truncated centered pentagonal numbers) on page 72 says: |
| 383 | + > `TCSS_5(n) = (35n^2 - 55n) / 2 + 3` |
| 384 | +
|
| 385 | + It should be: |
| 386 | + > `TCSS_5(n) = (35n^2 - 55n) / 2 + 11` |
| 387 | +
|
| 388 | +- Chapter 2, formula of octagonal pyramidal number on page 92 says: |
| 389 | + > `n(n+1)(6n-1) / 6` |
| 390 | +
|
| 391 | + It should be: |
| 392 | + > `n(n+1)(6n-3) / 6` |
| 393 | +
|
| 394 | +- Chapter 2, page 140 says: |
| 395 | + > centered square pyramidal numbers are 1, 6, 19, 44, 85, 111, 146, 231, ... |
| 396 | +
|
| 397 | + This sequence must exclude the number 111: |
| 398 | + |
| 399 | + > centered square pyramidal numbers are 1, 6, 19, 44, 85, ~~111~~, 146, 231, ... |
| 400 | +
|
| 401 | +- Chapter 2, page 155 (generalized centered tetrahedron numbers) says: |
| 402 | + > `S_3^3(n) = ((2n - 1)(n^2 + n + 3)) / 3` |
| 403 | +
|
| 404 | + Formula must have a negative sign: |
| 405 | + |
| 406 | + > `S_3^3(n) = ((2n - 1)(n^2 - n + 3)) / 3` |
| 407 | +
|
| 408 | +- Chapter 2, page 156 (generalized centered square pyramid numbers) says: |
| 409 | + > `S_4^3(n) = ((2n - 1) * (n^2 - n + 2)^2) / 3` |
| 410 | +
|
| 411 | + Formula must write: |
| 412 | + |
| 413 | + > `S_4^3(n) = ((2n - 1) * (n^2 - n + 2)) / 2` |
| 414 | +
|
| 415 | +- Chapter 3, page 188 (hyperoctahedral numbers) says: |
| 416 | + > `hexadecahoron numbers` |
| 417 | +
|
| 418 | + It should read: |
| 419 | + |
| 420 | + > `hexadecachoron numbers` |
| 421 | +
|
| 422 | +- Chapter 3, page 190 (hypericosahedral numbers) says: |
| 423 | + > `hexacisihoron numbers` |
| 424 | +
|
| 425 | + It should read: |
| 426 | + |
| 427 | + > `hexacosichoron numbers` |
| 428 | +
|
323 | 429 | ## Contributing
|
324 | 430 |
|
325 | 431 | FigurateNumber is currently under development, and we warmly invite your contributions. Just **fork** the project and then submit a **pull request**:
|
|
0 commit comments