You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: _sources/index.md.txt
+30Lines changed: 30 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -23,6 +23,36 @@ The Cardioception Python Package - Measuring Interoception with Psychopy - imple
23
23
24
24
These tasks can run using minimal experimental settings: a computer and a recording device to monitor the heart rate of the participant. The default version of the task uses the [Nonin 3012LP Xpod USB pulse oximeter](https://www.nonin.com/products/xpod/) together with [Nonin 8000SM 'soft-clip' fingertip sensors](https://www.nonin.com/products/8000s/). This sensor can be plugged directly into the stim PC via USB and will work with Cardioception without any additional coding required. The tasks can also integrate easily with other recording devices and experimental settings (ECG, M/EEG, fMRI...).
25
25
26
+
## 📊 Data Analysis
27
+
28
+
### 🎯 Recommended: R Analysis
29
+
30
+
**For comprehensive data analysis, we recommend using our R analysis scripts located in the `R_analysis/` directory.**
31
+
32
+
The R analysis provides:
33
+
- **Individual subject analysis** with reaction time plots and signal detection theory metrics
34
+
- **Group-level hierarchical analysis**
35
+
- **Bayesian analysis** using Stan models
36
+
- **Comprehensive visualization** of results
37
+
38
+
**🚀 Quick Start:**
39
+
- **Individual subject analysis**: See `R_analysis/Example scripts/Example_analysis_simple.Rmd`
40
+
- **Group-level analysis**: See `R_analysis/Example scripts/Example_analysis_Hierarchical.Rmd`
41
+
- **Bayesian analysis**: See `R_analysis/Example scripts/Example_analysis_bayesian.Rmd`
42
+
43
+
For complete documentation and examples, see the [R Analysis README](../R_analysis/README.md).
44
+
45
+
### 📈 Python Analysis (Outdated)
46
+
47
+
*Python analysis examples are available but are outdated and may not be maintained. For hierarchical Bayesian modeling, we strongly recommend using the R analysis approach above.*
48
+
49
+
Python users can find examples in the documentation, but these are primarily for reference. The Python analysis includes:
50
+
- Basic preprocessing and reporting functions
51
+
- Template notebooks for data visualization
52
+
- Outdated Bayesian modeling examples
53
+
54
+
**⚠️ Important**: Users interested in hierarchical Bayesian modeling should refer to the R analysis code, which provides more comprehensive and up-to-date implementations.
55
+
26
56
## Looking for help?
27
57
28
58
If you have questions regarding the tasks or want discuss data analysis, please contact Micah Allen directly.
Copy file name to clipboardExpand all lines: index.html
+37Lines changed: 37 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -471,6 +471,38 @@ <h1>🧠 Official Repository Notice<a class="headerlink" href="#official-reposit
471
471
<li><p>The <strong>Heart Rate Discrimination task</strong><spanid="id2">[<aclass="reference internal" href="references.html#id4" title="Nicolas Legrand, Niia Nikolova, Camile Correa, Malthe Brændholt, Anna Stuckert, Nanna Kildahl, Melina Vejlø, Francesca Fardo, and Micah Allen. The heart rate discrimination task: a psychophysical method to estimate the accuracy and precision of interoceptive beliefs. Biological Psychology, 168:108239, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0301051121002325, doi:https://doi.org/10.1016/j.biopsycho.2021.108239.">Legrand <em>et al.</em>, 2022</a>]</span> implementing an adaptive psychophysical measure of cardiac interoception where participants have to estimate the frequency of their heart rate by comparing it to tones that can be faster or slower. By manipulating the difference between the true heart rate and the presented tone using different staircase procedures, the bias (threshold) and precision (slope) of the psychometric function can be estimated either online or offline (see <em>Analyses</em> below), together with metacognitive efficiency.</p></li>
472
472
</ol>
473
473
<p>These tasks can run using minimal experimental settings: a computer and a recording device to monitor the heart rate of the participant. The default version of the task uses the <aclass="reference external" href="https://www.nonin.com/products/xpod/">Nonin 3012LP Xpod USB pulse oximeter</a> together with <aclass="reference external" href="https://www.nonin.com/products/8000s/">Nonin 8000SM ‘soft-clip’ fingertip sensors</a>. This sensor can be plugged directly into the stim PC via USB and will work with Cardioception without any additional coding required. The tasks can also integrate easily with other recording devices and experimental settings (ECG, M/EEG, fMRI…).</p>
474
+
<sectionid="data-analysis">
475
+
<h2>📊 Data Analysis<aclass="headerlink" href="#data-analysis" title="Permalink to this heading">#</a></h2>
476
+
<sectionid="recommended-r-analysis">
477
+
<h3>🎯 Recommended: R Analysis<aclass="headerlink" href="#recommended-r-analysis" title="Permalink to this heading">#</a></h3>
478
+
<p><strong>For comprehensive data analysis, we recommend using our R analysis scripts located in the <codeclass="docutils literal notranslate"><spanclass="pre">R_analysis/</span></code> directory.</strong></p>
479
+
<p>The R analysis provides:</p>
480
+
<ulclass="simple">
481
+
<li><p><strong>Individual subject analysis</strong> with reaction time plots and signal detection theory metrics</p></li>
<li><p><strong>Bayesian analysis</strong> using Stan models</p></li>
484
+
<li><p><strong>Comprehensive visualization</strong> of results</p></li>
485
+
</ul>
486
+
<p><strong>🚀 Quick Start:</strong></p>
487
+
<ulclass="simple">
488
+
<li><p><strong>Individual subject analysis</strong>: See <codeclass="docutils literal notranslate"><spanclass="pre">R_analysis/Example</span><spanclass="pre">scripts/Example_analysis_simple.Rmd</span></code></p></li>
489
+
<li><p><strong>Group-level analysis</strong>: See <codeclass="docutils literal notranslate"><spanclass="pre">R_analysis/Example</span><spanclass="pre">scripts/Example_analysis_Hierarchical.Rmd</span></code></p></li>
490
+
<li><p><strong>Bayesian analysis</strong>: See <codeclass="docutils literal notranslate"><spanclass="pre">R_analysis/Example</span><spanclass="pre">scripts/Example_analysis_bayesian.Rmd</span></code></p></li>
491
+
</ul>
492
+
<p>For complete documentation and examples, see the <aclass="reference internal" href="#../R_analysis/README.md"><spanclass="xref myst">R Analysis README</span></a>.</p>
493
+
</section>
494
+
<sectionid="python-analysis-outdated">
495
+
<h3>📈 Python Analysis (Outdated)<aclass="headerlink" href="#python-analysis-outdated" title="Permalink to this heading">#</a></h3>
496
+
<p><em>Python analysis examples are available but are outdated and may not be maintained. For hierarchical Bayesian modeling, we strongly recommend using the R analysis approach above.</em></p>
497
+
<p>Python users can find examples in the documentation, but these are primarily for reference. The Python analysis includes:</p>
498
+
<ulclass="simple">
499
+
<li><p>Basic preprocessing and reporting functions</p></li>
500
+
<li><p>Template notebooks for data visualization</p></li>
<p><strong>⚠️ Important</strong>: Users interested in hierarchical Bayesian modeling should refer to the R analysis code, which provides more comprehensive and up-to-date implementations.</p>
504
+
</section>
505
+
</section>
474
506
<sectionid="looking-for-help">
475
507
<h2>Looking for help?<aclass="headerlink" href="#looking-for-help" title="Permalink to this heading">#</a></h2>
476
508
<p>If you have questions regarding the tasks or want discuss data analysis, please contact Micah Allen directly.</p>
@@ -525,6 +557,11 @@ <h2>Development<a class="headerlink" href="#development" title="Permalink to thi
0 commit comments