@@ -86,7 +86,7 @@ subroutine numhess( &
86
86
real (wp) :: sum1,sum2,trdip(3 ),dipole(3 )
87
87
real (wp) :: trpol(3 ),sl(3 ,3 )
88
88
integer :: n3,i,j,k,ic,jc,ia,ja,ii,jj,info,lwork,a,b,ri,rj
89
- integer :: nread,kend, lowmode
89
+ integer :: nread,lowmode
90
90
integer :: nonfrozh
91
91
integer :: fixmode
92
92
integer , allocatable :: nb(:,:)
@@ -442,31 +442,7 @@ subroutine numhess( &
442
442
if (mol% n > 1 ) then
443
443
h = 0.0_wp
444
444
isqm = 0.0_wp
445
- kend= 0
446
- if (freezeset% n == 0 ) then
447
- kend= 6
448
- if (res% linear)then
449
- kend= 5
450
- do i= 1 ,kend
451
- izero(i)= i
452
- enddo
453
- res% freq(1 :kend)= 0
454
- endif
455
- do k= 1 ,kend
456
- h(1 :n3,k)= res% hess(1 :n3,izero(k))
457
- isqm( k)= res% freq(izero(k))
458
- enddo
459
- else if (freezeset% n <= 2 ) then
460
- ! for systems with one fixed atom, there should be 2 and 3 degrees of freedom for linear and non-linear systems, respectively
461
- ! for systems with two fixed atoms, there should be 0 and 1 degrees of freedom for linear and non-linear systems, respectively
462
- ! for linear systems with more than two fixed atoms, there should be 0 degrees of freedom
463
- ! for non-linear systems unless one fixes three atoms defines plane, 1 degree of freedom will exist, otherwise there should be 0 degrees of freedom
464
- ! anyway, the check here will become more complex and therefore it is not impemented
465
- ! NOTE: it is not necessary lowest N frequencies
466
- error stop " not implemented"
467
- ! for three atom systems we assume that the plane was constructed (or linear system is used)
468
- endif
469
- j= kend
445
+ j = 0
470
446
do k= 1 , n3
471
447
if (abs (res% freq(k)) > 0.05_wp ) then
472
448
j = j + 1
0 commit comments