@@ -31,35 +31,11 @@ DeclareCategory( "IsCapCategoryMorphismInAlgebroid",
31
31
DeclareCategory( " IsAlgebroid" ,
32
32
IsCapCategory );
33
33
34
- # ! @Description
35
- # ! The ⪆ category of morphisms of algebroids.
36
- DeclareCategory( " IsAlgebroidMorphism" ,
37
- IsCapFunctor );
38
-
39
34
# ! @Description
40
35
# ! The ⪆ category of algebras.
41
36
DeclareCategory( " IsAlgebraAsCategory" ,
42
37
IsAlgebroid );
43
38
44
- # ! @Description
45
- # ! The GAP category of objects in the category
46
- # ! of algebroids over a ring $R$.
47
- # ! @Arguments object
48
- DeclareCategory( " IsCategoryOfAlgebroidsObject" ,
49
- IsCapCategoryObject );
50
-
51
- # ! @Description
52
- # ! The GAP category of morphisms in the category
53
- # ! of algebroids over a ring $R$.
54
- # ! @Arguments object
55
- DeclareCategory( " IsCategoryOfAlgebroidsMorphism" ,
56
- IsCapCategoryMorphism );
57
-
58
- DeclareGlobalFunction( " INSTALL_FUNCTIONS_FOR_CATEGORY_OF_ALGEBROIDS" );
59
-
60
- DeclareCategory( " IsCategoryOfAlgebroids" ,
61
- IsCapCategory );
62
-
63
39
# ###################################
64
40
#
65
41
# ! @Section Properties
@@ -83,26 +59,20 @@ CAP_INTERNAL_CONSTRUCTIVE_CATEGORIES_RECORD.IsFinitelyPresentedCategory := Conca
83
59
# ! @Returns true or false
84
60
DeclareProperty( " IsCommutative" ,
85
61
IsAlgebroid );
86
- DeclareProperty( " IsCommutative" ,
87
- IsCategoryOfAlgebroidsObject );
88
62
89
63
# ! @Description
90
64
# ! Check whether <A>B</A> is counitary.
91
65
# ! @Arguments B
92
66
# ! @Returns true or false
93
67
DeclareProperty( " IsCounitary" ,
94
68
IsAlgebroid );
95
- DeclareProperty( " IsCounitary" ,
96
- IsCategoryOfAlgebroidsObject );
97
69
98
70
# ! @Description
99
71
# ! Check whether <A>B</A> is coassociative.
100
72
# ! @Arguments B
101
73
# ! @Returns true or false
102
74
DeclareProperty( " IsCoassociative" ,
103
75
IsAlgebroid );
104
- DeclareProperty( " IsCoassociative" ,
105
- IsCategoryOfAlgebroidsObject );
106
76
107
77
# ###################################
108
78
#
@@ -239,61 +209,6 @@ DeclareAttribute( "Parity",
239
209
DeclareOperation( " POW" ,
240
210
[ IsAlgebroid, IsInt ] );
241
211
242
- DeclareOperation( " \* " ,
243
- [ IsAlgebroid, IsAlgebroid ] );
244
-
245
- DeclareOperation( " TrivialAlgebroid" ,
246
- [ IsHomalgRing, IsString ] );
247
-
248
- DeclareOperation( " TensorProductOnObjects" ,
249
- [ IsAlgebroid, IsAlgebroid ] );
250
-
251
- DeclareOperation( " LeftUnitorInverseAsFunctor" ,
252
- [ IsAlgebroid ] );
253
-
254
- DeclareOperation( " LeftUnitorAsFunctor" ,
255
- [ IsAlgebroid ] );
256
-
257
- DeclareOperation( " RightUnitorInverseAsFunctor" ,
258
- [ IsAlgebroid ] );
259
-
260
- DeclareOperation( " RightUnitorAsFunctor" ,
261
- [ IsAlgebroid ] );
262
-
263
- DeclareOperation( " AssociatorLeftToRightWithGivenTensorProductsAsFunctor" ,
264
- [ IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid ] );
265
-
266
- DeclareOperation( " AssociatorRightToLeftWithGivenTensorProductsAsFunctor" ,
267
- [ IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid ] );
268
-
269
- # ! @Description
270
- # ! Construct the canonical twist from <A>A</A> $\otimes$ <A>B</A> to <A>B</A> $\otimes$ <A>A</A>
271
- # ! @Arguments A, B
272
- # ! @Returns a &CAP; functor
273
- DeclareOperation( " Twist" ,
274
- [ IsAlgebroid, IsAlgebroid ] );
275
-
276
- # ! @Description
277
- # ! Given an object <A>a</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and b in T.
278
- # ! @Arguments a, b, T
279
- # ! @Returns a morphism in a &CAP; category
280
- DeclareOperation( " ElementaryTensor" ,
281
- [ IsCapCategoryObjectInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
282
-
283
- # ! @Description
284
- # ! Given an object <A>a</A> in an algebroid A and a morphism <A>g</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and g in T.
285
- # ! @Arguments a, g, T
286
- # ! @Returns a morphism in a &CAP; category
287
- DeclareOperation( " ElementaryTensor" ,
288
- [ IsCapCategoryObjectInAlgebroid, IsCapCategoryMorphismInAlgebroid, IsAlgebroid ] );
289
-
290
- # ! @Description
291
- # ! Given a morphism <A>f</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of f and b in T.
292
- # ! @Arguments f, b, T
293
- # ! @Returns a morphism in a &CAP; category
294
- DeclareOperation( " ElementaryTensor" ,
295
- [ IsCapCategoryMorphismInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
296
-
297
212
DeclareAttribute( " BijectionBetweenPairsAndElementaryTensors" ,
298
213
IsQuiverAlgebra );
299
214
@@ -309,6 +224,7 @@ DeclareAttribute( "DecompositionOfMorphismInSquareOfAlgebroid",
309
224
#
310
225
# ###################################
311
226
227
+ # ! @Arguments e
312
228
DeclareOperation( " DecomposeQuiverAlgebraElement" ,
313
229
[ IsQuiverAlgebraElement ] );
314
230
@@ -326,6 +242,35 @@ DeclareOperation( "ApplyToQuiverAlgebraElement",
326
242
DeclareOperation( " ApplyToQuiverAlgebraElement" ,
327
243
[ IsCapFunctor, IsQuiverAlgebraElement ] );
328
244
245
+ # ! @Arguments k, str
246
+ DeclareOperation( " TrivialAlgebroid" ,
247
+ [ IsHomalgRing, IsString ] );
248
+
249
+ # ! @Arguments A, B
250
+ DeclareOperation( " \* " ,
251
+ [ IsAlgebroid, IsAlgebroid ] );
252
+
253
+ # ! @Description
254
+ # ! Given an object <A>a</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and b in T.
255
+ # ! @Arguments a, b, T
256
+ # ! @Returns a morphism in a &CAP; category
257
+ DeclareOperation( " ElementaryTensor" ,
258
+ [ IsCapCategoryObjectInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
259
+
260
+ # ! @Description
261
+ # ! Given an object <A>a</A> in an algebroid A and a morphism <A>g</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and g in T.
262
+ # ! @Arguments a, g, T
263
+ # ! @Returns a morphism in a &CAP; category
264
+ DeclareOperation( " ElementaryTensor" ,
265
+ [ IsCapCategoryObjectInAlgebroid, IsCapCategoryMorphismInAlgebroid, IsAlgebroid ] );
266
+
267
+ # ! @Description
268
+ # ! Given a morphism <A>f</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of f and b in T.
269
+ # ! @Arguments f, b, T
270
+ # ! @Returns a morphism in a &CAP; category
271
+ DeclareOperation( " ElementaryTensor" ,
272
+ [ IsCapCategoryMorphismInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
273
+
329
274
# ! @Description
330
275
# ! The ouput is the LaTeX string of the object <A>o</A>.
331
276
# ! @Arguments o
@@ -350,18 +295,6 @@ DeclareGlobalFunction( "ADD_FUNCTIONS_FOR_HOM_STRUCTURE_OF_ALGEBROID" );
350
295
351
296
DeclareGlobalFunction( " ADD_FUNCTIONS_FOR_RANDOM_METHODS_OF_ALGEBROID" );
352
297
353
- DeclareOperation( " CategoryOfAlgebroids" ,
354
- [ IsHomalgRing, IsString ] );
355
-
356
- DeclareAttribute( " CategoryOfAlgebroidsObject" ,
357
- IsAlgebroid );
358
-
359
- DeclareOperation( " CategoryOfAlgebroidsMorphism" ,
360
- [ IsCategoryOfAlgebroidsObject, IsAlgebroidMorphism, IsCategoryOfAlgebroidsObject ] );
361
-
362
- DeclareOperation( " CategoryOfAlgebroidsMorphism" ,
363
- [ IsAlgebroidMorphism ] );
364
-
365
298
# ! @Description
366
299
# ! Construct the algebroid associated to the path $R$-algebra <A>Rq</A>
367
300
# ! of the quiver $q$ modulo the relations <A>L</A> as an $R$-linear category.
@@ -477,9 +410,3 @@ DeclareOperation( "MorphismInAlgebroid",
477
410
# ! @Arguments path, A
478
411
# ! @Returns a morphism in a &CAP; category
479
412
DeclareOperation( " \/ " , [ IsQuiverAlgebraElement, IsAlgebroid ] );
480
-
481
- DeclareAttribute( " AsCapCategory" ,
482
- IsCategoryOfAlgebroidsObject );
483
-
484
- DeclareAttribute( " AsCapFunctor" ,
485
- IsCategoryOfAlgebroidsMorphism );
0 commit comments