Skip to content

Commit b2b121c

Browse files
heiderichmohamed-barakat
authored andcommitted
relocated code from Algebroids.g? -> CategoryOfAlgebroids.g?
1 parent 6fc3666 commit b2b121c

File tree

7 files changed

+812
-672
lines changed

7 files changed

+812
-672
lines changed

PackageInfo.g

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ Version := Maximum( [
1515
## this line prevents merge conflicts
1616
"2020.09-08", ## Kamal's version
1717
## this line prevents merge conflicts
18-
"2019.02-12", ## Florian's version
18+
"2020.10-02", ## Florian's version
1919
## this line prevents merge conflicts
2020
"2019.10-30", ## Sepp's version
2121
] ),

gap/Algebroids.gd

Lines changed: 30 additions & 103 deletions
Original file line numberDiff line numberDiff line change
@@ -31,35 +31,11 @@ DeclareCategory( "IsCapCategoryMorphismInAlgebroid",
3131
DeclareCategory( "IsAlgebroid",
3232
IsCapCategory );
3333

34-
#! @Description
35-
#! The ⪆ category of morphisms of algebroids.
36-
DeclareCategory( "IsAlgebroidMorphism",
37-
IsCapFunctor );
38-
3934
#! @Description
4035
#! The ⪆ category of algebras.
4136
DeclareCategory( "IsAlgebraAsCategory",
4237
IsAlgebroid );
4338

44-
#! @Description
45-
#! The GAP category of objects in the category
46-
#! of algebroids over a ring $R$.
47-
#! @Arguments object
48-
DeclareCategory( "IsCategoryOfAlgebroidsObject",
49-
IsCapCategoryObject );
50-
51-
#! @Description
52-
#! The GAP category of morphisms in the category
53-
#! of algebroids over a ring $R$.
54-
#! @Arguments object
55-
DeclareCategory( "IsCategoryOfAlgebroidsMorphism",
56-
IsCapCategoryMorphism );
57-
58-
DeclareGlobalFunction( "INSTALL_FUNCTIONS_FOR_CATEGORY_OF_ALGEBROIDS" );
59-
60-
DeclareCategory( "IsCategoryOfAlgebroids",
61-
IsCapCategory );
62-
6339
####################################
6440
#
6541
#! @Section Properties
@@ -83,26 +59,20 @@ CAP_INTERNAL_CONSTRUCTIVE_CATEGORIES_RECORD.IsFinitelyPresentedCategory := Conca
8359
#! @Returns true or false
8460
DeclareProperty( "IsCommutative",
8561
IsAlgebroid );
86-
DeclareProperty( "IsCommutative",
87-
IsCategoryOfAlgebroidsObject );
8862

8963
#! @Description
9064
#! Check whether <A>B</A> is counitary.
9165
#! @Arguments B
9266
#! @Returns true or false
9367
DeclareProperty( "IsCounitary",
9468
IsAlgebroid );
95-
DeclareProperty( "IsCounitary",
96-
IsCategoryOfAlgebroidsObject );
9769

9870
#! @Description
9971
#! Check whether <A>B</A> is coassociative.
10072
#! @Arguments B
10173
#! @Returns true or false
10274
DeclareProperty( "IsCoassociative",
10375
IsAlgebroid );
104-
DeclareProperty( "IsCoassociative",
105-
IsCategoryOfAlgebroidsObject );
10676

10777
####################################
10878
#
@@ -239,61 +209,6 @@ DeclareAttribute( "Parity",
239209
DeclareOperation( "POW",
240210
[ IsAlgebroid, IsInt ] );
241211

242-
DeclareOperation( "\*",
243-
[ IsAlgebroid, IsAlgebroid ] );
244-
245-
DeclareOperation( "TrivialAlgebroid",
246-
[ IsHomalgRing, IsString ] );
247-
248-
DeclareOperation( "TensorProductOnObjects",
249-
[ IsAlgebroid, IsAlgebroid ] );
250-
251-
DeclareOperation( "LeftUnitorInverseAsFunctor",
252-
[ IsAlgebroid ] );
253-
254-
DeclareOperation( "LeftUnitorAsFunctor",
255-
[ IsAlgebroid ] );
256-
257-
DeclareOperation( "RightUnitorInverseAsFunctor",
258-
[ IsAlgebroid ] );
259-
260-
DeclareOperation( "RightUnitorAsFunctor",
261-
[ IsAlgebroid ] );
262-
263-
DeclareOperation( "AssociatorLeftToRightWithGivenTensorProductsAsFunctor",
264-
[ IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid ] );
265-
266-
DeclareOperation( "AssociatorRightToLeftWithGivenTensorProductsAsFunctor",
267-
[ IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid, IsAlgebroid ] );
268-
269-
#! @Description
270-
#! Construct the canonical twist from <A>A</A> $\otimes$ <A>B</A> to <A>B</A> $\otimes$ <A>A</A>
271-
#! @Arguments A, B
272-
#! @Returns a &CAP; functor
273-
DeclareOperation( "Twist",
274-
[ IsAlgebroid, IsAlgebroid ] );
275-
276-
#! @Description
277-
#! Given an object <A>a</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and b in T.
278-
#! @Arguments a, b, T
279-
#! @Returns a morphism in a &CAP; category
280-
DeclareOperation( "ElementaryTensor",
281-
[ IsCapCategoryObjectInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
282-
283-
#! @Description
284-
#! Given an object <A>a</A> in an algebroid A and a morphism <A>g</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and g in T.
285-
#! @Arguments a, g, T
286-
#! @Returns a morphism in a &CAP; category
287-
DeclareOperation( "ElementaryTensor",
288-
[ IsCapCategoryObjectInAlgebroid, IsCapCategoryMorphismInAlgebroid, IsAlgebroid ] );
289-
290-
#! @Description
291-
#! Given a morphism <A>f</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of f and b in T.
292-
#! @Arguments f, b, T
293-
#! @Returns a morphism in a &CAP; category
294-
DeclareOperation( "ElementaryTensor",
295-
[ IsCapCategoryMorphismInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
296-
297212
DeclareAttribute( "BijectionBetweenPairsAndElementaryTensors",
298213
IsQuiverAlgebra );
299214

@@ -309,6 +224,7 @@ DeclareAttribute( "DecompositionOfMorphismInSquareOfAlgebroid",
309224
#
310225
####################################
311226

227+
#! @Arguments e
312228
DeclareOperation( "DecomposeQuiverAlgebraElement",
313229
[ IsQuiverAlgebraElement ] );
314230

@@ -326,6 +242,35 @@ DeclareOperation( "ApplyToQuiverAlgebraElement",
326242
DeclareOperation( "ApplyToQuiverAlgebraElement",
327243
[ IsCapFunctor, IsQuiverAlgebraElement ] );
328244

245+
#! @Arguments k, str
246+
DeclareOperation( "TrivialAlgebroid",
247+
[ IsHomalgRing, IsString ] );
248+
249+
#! @Arguments A, B
250+
DeclareOperation( "\*",
251+
[ IsAlgebroid, IsAlgebroid ] );
252+
253+
#! @Description
254+
#! Given an object <A>a</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and b in T.
255+
#! @Arguments a, b, T
256+
#! @Returns a morphism in a &CAP; category
257+
DeclareOperation( "ElementaryTensor",
258+
[ IsCapCategoryObjectInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
259+
260+
#! @Description
261+
#! Given an object <A>a</A> in an algebroid A and a morphism <A>g</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of a and g in T.
262+
#! @Arguments a, g, T
263+
#! @Returns a morphism in a &CAP; category
264+
DeclareOperation( "ElementaryTensor",
265+
[ IsCapCategoryObjectInAlgebroid, IsCapCategoryMorphismInAlgebroid, IsAlgebroid ] );
266+
267+
#! @Description
268+
#! Given a morphism <A>f</A> in an algebroid A and an object <A>b</A> in an algebroid B and the tensor product <A>T</A> of A and B, return the tensor product of f and b in T.
269+
#! @Arguments f, b, T
270+
#! @Returns a morphism in a &CAP; category
271+
DeclareOperation( "ElementaryTensor",
272+
[ IsCapCategoryMorphismInAlgebroid, IsCapCategoryObjectInAlgebroid, IsAlgebroid ] );
273+
329274
#! @Description
330275
#! The ouput is the LaTeX string of the object <A>o</A>.
331276
#! @Arguments o
@@ -350,18 +295,6 @@ DeclareGlobalFunction( "ADD_FUNCTIONS_FOR_HOM_STRUCTURE_OF_ALGEBROID" );
350295

351296
DeclareGlobalFunction( "ADD_FUNCTIONS_FOR_RANDOM_METHODS_OF_ALGEBROID" );
352297

353-
DeclareOperation( "CategoryOfAlgebroids",
354-
[ IsHomalgRing, IsString ] );
355-
356-
DeclareAttribute( "CategoryOfAlgebroidsObject",
357-
IsAlgebroid );
358-
359-
DeclareOperation( "CategoryOfAlgebroidsMorphism",
360-
[ IsCategoryOfAlgebroidsObject, IsAlgebroidMorphism, IsCategoryOfAlgebroidsObject ] );
361-
362-
DeclareOperation( "CategoryOfAlgebroidsMorphism",
363-
[ IsAlgebroidMorphism ] );
364-
365298
#! @Description
366299
#! Construct the algebroid associated to the path $R$-algebra <A>Rq</A>
367300
#! of the quiver $q$ modulo the relations <A>L</A> as an $R$-linear category.
@@ -477,9 +410,3 @@ DeclareOperation( "MorphismInAlgebroid",
477410
#! @Arguments path, A
478411
#! @Returns a morphism in a &CAP; category
479412
DeclareOperation( "\/", [ IsQuiverAlgebraElement, IsAlgebroid ] );
480-
481-
DeclareAttribute( "AsCapCategory",
482-
IsCategoryOfAlgebroidsObject );
483-
484-
DeclareAttribute( "AsCapFunctor",
485-
IsCategoryOfAlgebroidsMorphism );

0 commit comments

Comments
 (0)