@@ -7,7 +7,13 @@ LoadPackage( "Algebroids" );
7
7
# ! @Example
8
8
q := RightQuiver( " q(o)[m:o->o,i:o->o]" );
9
9
# ! q(o)[m:o->o,i:o->o]
10
- L := [ [ q.m * q.i, q.o ] , [ q.i * q.m, q.o ] ] ;
10
+ o := q.o;
11
+ # ! (o)
12
+ m := q.m;
13
+ # ! (m)
14
+ i := q.i;
15
+ # ! (i)
16
+ L := [ [ m * i, o ] , [ i * m, o ] ] ;
11
17
# ! [ [ (m*i), (o) ], [ (i*m), (o) ] ]
12
18
# ! @EndExample
13
19
@@ -20,6 +26,8 @@ IsCommutative( ZZ );
20
26
# ! true
21
27
ZZ.o;
22
28
# ! <(o)>
29
+ IsWellDefined( ZZ.o );
30
+ # ! true
23
31
m := ZZ.m;
24
32
# ! (o)-[(m)]->(o)
25
33
i := ZZ.i;
@@ -30,24 +38,26 @@ SetOfGeneratingMorphisms( ZZ );
30
38
# ! [ (o)-[(m)]->(o), (o)-[(i)]->(o) ]
31
39
SetOfGeneratingMorphisms( ZZ, ZZ.o, ZZ.o );
32
40
# ! [ (o)-[(m)]->(o), (o)-[(i)]->(o) ]
33
- ObjectInFpCategory( ZZ, q. o ) = ZZ.o;
41
+ ObjectInFpCategory( ZZ, o ) = ZZ.o;
34
42
# ! true
35
- ZZ.o = q. o / ZZ;
43
+ ZZ.o = o / ZZ;
36
44
# ! true
45
+ IdentityMorphism( ZZ.o );
46
+ # ! (o)-[(o)]->(o)
37
47
MorphismInFpCategory( ZZ, q.m ) = ZZ.m;
38
48
# ! true
39
49
ZZ.m = q.m / ZZ;
40
50
# ! true
41
- IdentityMorphism( ZZ.o );
42
- # ! (o)-[(o)]->(o)
43
51
# ! @EndExample
44
52
45
53
# ! We can compute in the algebroids.
46
54
# ! For instance we can form compositions.
47
55
48
56
# ! @Example
49
- PreCompose( [ m, i, m, m, i, m, i, m ] );
57
+ m2 := PreCompose( [ m, i, m, m, i, m, i, m ] );
50
58
# ! (o)-[(m*m)]->(o)
59
+ IsWellDefined( m2 );
60
+ # ! true
51
61
unit := Unit( ZZ );
52
62
# ! Functor from Monoid generated by the right quiver *(1)[]
53
63
# ! -> Monoid generated by the right quiver q(o)[m:o->o,i:o->o]
0 commit comments