|
1 | 1 | import pandas as pd
|
2 | 2 | from numpy import float64
|
3 | 3 |
|
4 |
| -from pypsdm.processing.dataframe import add_df, divide_positive_negative |
| 4 | +from pypsdm.processing.dataframe import ( |
| 5 | + add_df, |
| 6 | + divide_positive_negative, |
| 7 | + filter_data_for_time_interval, |
| 8 | +) |
5 | 9 |
|
6 | 10 | index = pd.date_range("2012-01-01 10:00:00", "2012-01-01 13:00:00", freq="h")
|
7 | 11 | data = [1, 2, -2, 3]
|
@@ -37,3 +41,139 @@ def test_add_df():
|
37 | 41 | b = b.reindex(index=[3, 2])
|
38 | 42 | res = add_df(a, b)
|
39 | 43 | pd.testing.assert_frame_equal(res, expected)
|
| 44 | + |
| 45 | + |
| 46 | +def test_filter_data_for_time_interval(): |
| 47 | + input_data = { |
| 48 | + "time": [ |
| 49 | + "2016-04-01 17:30:00", |
| 50 | + "2016-04-01 18:15:00", |
| 51 | + "2016-04-01 19:30:00", |
| 52 | + "2016-04-01 20:45:00", |
| 53 | + ], |
| 54 | + "p": [0.022, 0.0, 0.022, 0.0], |
| 55 | + "q": [0.0, 0.0, 0.0, 0.0], |
| 56 | + } |
| 57 | + |
| 58 | + input_df = pd.DataFrame(input_data) |
| 59 | + |
| 60 | + input_df["time"] = pd.to_datetime(input_df["time"]) |
| 61 | + input_df.set_index("time", inplace=True) |
| 62 | + |
| 63 | + start_1 = pd.to_datetime("2016-04-01 17:00:00") |
| 64 | + end_1 = pd.to_datetime("2016-04-01 21:00:00") |
| 65 | + res_1 = filter_data_for_time_interval(input_df, start_1, end_1) |
| 66 | + |
| 67 | + expected_data_1 = { |
| 68 | + "p": [0.022, 0.000, 0.022, 0.000], |
| 69 | + "q": [0.000, 0.000, 0.000, 0.000], |
| 70 | + } |
| 71 | + |
| 72 | + expected_index_1 = [ |
| 73 | + pd.Timestamp("2016-04-01 17:30:00"), |
| 74 | + pd.Timestamp("2016-04-01 18:15:00"), |
| 75 | + pd.Timestamp("2016-04-01 19:30:00"), |
| 76 | + pd.Timestamp("2016-04-01 20:45:00"), |
| 77 | + ] |
| 78 | + |
| 79 | + expected_1 = pd.DataFrame(expected_data_1) |
| 80 | + expected_1.index = expected_index_1 |
| 81 | + expected_1.index.name = "time" |
| 82 | + |
| 83 | + pd.testing.assert_frame_equal(res_1, expected_1) |
| 84 | + |
| 85 | + start_2 = pd.to_datetime("2016-04-01 17:30:00") |
| 86 | + end_2 = pd.to_datetime("2016-04-01 21:00:00") |
| 87 | + res_2 = filter_data_for_time_interval(input_df, start_2, end_2) |
| 88 | + |
| 89 | + expected_data_2 = { |
| 90 | + "p": [0.022, 0.000, 0.022, 0.000], |
| 91 | + "q": [0.000, 0.000, 0.000, 0.000], |
| 92 | + } |
| 93 | + |
| 94 | + expected_index_2 = [ |
| 95 | + pd.Timestamp("2016-04-01 17:30:00"), |
| 96 | + pd.Timestamp("2016-04-01 18:15:00"), |
| 97 | + pd.Timestamp("2016-04-01 19:30:00"), |
| 98 | + pd.Timestamp("2016-04-01 20:45:00"), |
| 99 | + ] |
| 100 | + |
| 101 | + expected_2 = pd.DataFrame(expected_data_2) |
| 102 | + expected_2.index = expected_index_2 |
| 103 | + expected_2.index.name = "time" |
| 104 | + |
| 105 | + pd.testing.assert_frame_equal(res_2, expected_2) |
| 106 | + |
| 107 | + start_2 = pd.to_datetime("2016-04-01 18:00:00") |
| 108 | + end_2 = pd.to_datetime("2016-04-01 21:00:00") |
| 109 | + res_2 = filter_data_for_time_interval(input_df, start_2, end_2) |
| 110 | + |
| 111 | + expected_data_2 = { |
| 112 | + "p": [0.022, 0.000, 0.022, 0.000], |
| 113 | + "q": [0.000, 0.000, 0.000, 0.000], |
| 114 | + } |
| 115 | + |
| 116 | + expected_index_2 = [ |
| 117 | + pd.Timestamp("2016-04-01 18:00:00"), |
| 118 | + pd.Timestamp("2016-04-01 18:15:00"), |
| 119 | + pd.Timestamp("2016-04-01 19:30:00"), |
| 120 | + pd.Timestamp("2016-04-01 20:45:00"), |
| 121 | + ] |
| 122 | + |
| 123 | + expected_2 = pd.DataFrame(expected_data_2) |
| 124 | + expected_2.index = expected_index_2 |
| 125 | + expected_2.index.name = "time" |
| 126 | + |
| 127 | + pd.testing.assert_frame_equal(res_2, expected_2) |
| 128 | + |
| 129 | + start_3 = pd.to_datetime("2016-04-01 18:15:00") |
| 130 | + end_3 = pd.to_datetime("2016-04-01 21:00:00") |
| 131 | + res_3 = filter_data_for_time_interval(input_df, start_3, end_3) |
| 132 | + |
| 133 | + expected_data_3 = {"p": [0.000, 0.022, 0.000], "q": [0.000, 0.000, 0.000]} |
| 134 | + |
| 135 | + expected_index_3 = [ |
| 136 | + pd.Timestamp("2016-04-01 18:15:00"), |
| 137 | + pd.Timestamp("2016-04-01 19:30:00"), |
| 138 | + pd.Timestamp("2016-04-01 20:45:00"), |
| 139 | + ] |
| 140 | + |
| 141 | + expected_3 = pd.DataFrame(expected_data_3) |
| 142 | + expected_3.index = expected_index_3 |
| 143 | + expected_3.index.name = "time" |
| 144 | + |
| 145 | + pd.testing.assert_frame_equal(res_3, expected_3) |
| 146 | + |
| 147 | + start_4 = pd.to_datetime("2016-04-01 17:00:00") |
| 148 | + end_4 = pd.to_datetime("2016-04-01 18:30:00") |
| 149 | + res_4 = filter_data_for_time_interval(input_df, start_4, end_4) |
| 150 | + |
| 151 | + expected_data_4 = {"p": [0.022, 0.000], "q": [0.000, 0.000]} |
| 152 | + |
| 153 | + expected_index_4 = [ |
| 154 | + pd.Timestamp("2016-04-01 17:30:00"), |
| 155 | + pd.Timestamp("2016-04-01 18:15:00"), |
| 156 | + ] |
| 157 | + |
| 158 | + expected_4 = pd.DataFrame(expected_data_4) |
| 159 | + expected_4.index = expected_index_4 |
| 160 | + expected_4.index.name = "time" |
| 161 | + |
| 162 | + pd.testing.assert_frame_equal(res_4, expected_4) |
| 163 | + |
| 164 | + start_5 = pd.to_datetime("2016-04-01 17:00:00") |
| 165 | + end_5 = pd.to_datetime("2016-04-01 17:15:00") |
| 166 | + res_5 = filter_data_for_time_interval(input_df, start_5, end_5) |
| 167 | + |
| 168 | + expected_data_5 = { |
| 169 | + "p": [], |
| 170 | + "q": [], |
| 171 | + } |
| 172 | + |
| 173 | + expected_index_5 = pd.DatetimeIndex([]) |
| 174 | + |
| 175 | + expected_5 = pd.DataFrame(expected_data_5) |
| 176 | + expected_5.index = expected_index_5 |
| 177 | + expected_5.index.name = "time" |
| 178 | + |
| 179 | + pd.testing.assert_frame_equal(res_5, expected_5) |
0 commit comments