8
8
[ ![ CRAN
9
9
status] ( https://www.r-pkg.org/badges/version/logitr )] ( https://CRAN.R-project.org/package=logitr )
10
10
[ ![ Travis build
11
- status] ( https://travis-ci.com/jhelvy/logitr.svg?branch=master )] ( https://travis-ci.com/jhelvy/logitr )
11
+ status] ( https://app. travis-ci.com/jhelvy/logitr.svg?branch=master )] ( https://app. travis-ci.com/github /jhelvy/logitr )
12
12
[ ![ ] ( http://cranlogs.r-pkg.org/badges/grand-total/logitr?color=blue )] ( https://cran.r-project.org/package=logitr )
13
13
<!-- badges: end -->
14
14
@@ -18,26 +18,26 @@ parameterizations](https://jhelvy.github.io/logitr/articles/utility_models.html)
18
18
19
19
The latest version includes support for:
20
20
21
- - Homogeneous multinomial logit (MNL) models
22
- - Heterogeneous mixed logit (MXL) models with normal and log-normal
21
+ - Homogeneous multinomial logit (MNL) models
22
+ - Heterogeneous mixed logit (MXL) models with normal and log-normal
23
23
parameter distributions.
24
- - Preference space and WTP space utility parameterizations.
25
- - Weighted models to differentially weight individual choice
24
+ - Preference space and WTP space utility parameterizations.
25
+ - Weighted models to differentially weight individual choice
26
26
observations.
27
- - Functions for computing WTP from preference space models.
28
- - Functions for predicting expected choices and choice probabilities
27
+ - Functions for computing WTP from preference space models.
28
+ - Functions for predicting expected choices and choice probabilities
29
29
for a set (or multiple sets) of alternatives based on an estimated
30
30
model.
31
- - An option to run a multistart optimization loop that uses different
31
+ - An option to run a multistart optimization loop that uses different
32
32
random starting points in each iteration to search for different
33
33
local minima (useful for non-convex problems like MXL models or
34
34
models with WTP space parameterizations).
35
35
36
36
Note: MXL models assume uncorrelated heterogeneity covariances and are
37
37
estimated using maximum simulated likelihood based on the algorithms in
38
38
Kenneth Train’s book [ * Discrete Choice Methods with Simulation, 2nd
39
- Edition (New York: Cambridge University
40
- Press, 2009)* ] ( https://eml.berkeley.edu/books/choice2.html ) .
39
+ Edition (New York: Cambridge University Press,
40
+ 2009)* ] ( https://eml.berkeley.edu/books/choice2.html ) .
41
41
42
42
## Installation
43
43
@@ -69,9 +69,9 @@ for details on how to use **logitr** to estimate models.
69
69
70
70
## Author, Version, and License Information
71
71
72
- - Author: * John Paul Helveston* < https://www.jhelvy.com/ >
73
- - Date First Written: * Sunday, September 28, 2014*
74
- - License:
72
+ - Author: * John Paul Helveston* < https://www.jhelvy.com/ >
73
+ - Date First Written: * Sunday, September 28, 2014*
74
+ - License:
75
75
[ MIT] ( https://github.com/jhelvy/logitr/blob/master/LICENSE.md )
76
76
77
77
## Citation Information
@@ -82,15 +82,15 @@ it if you cited it - you can get the citation by typing
82
82
83
83
``` r
84
84
citation(" logitr" )
85
- # >
85
+ # >
86
86
# > To cite logitr in publications use:
87
- # >
87
+ # >
88
88
# > John Paul Helveston (2021). logitr: Random utility logit models with
89
89
# > preference and willingness to pay space parameterizations. R package
90
90
# > version 0.4.0
91
- # >
91
+ # >
92
92
# > A BibTeX entry for LaTeX users is
93
- # >
93
+ # >
94
94
# > @Manual{,
95
95
# > title = {logitr: Random Utility Logit Models with Preference and Willingness to Pay Space Parameterizations},
96
96
# > author = {John Paul Helveston},
0 commit comments