Skip to content

Commit 5b905d0

Browse files
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
1 parent 6dbdddd commit 5b905d0

File tree

2 files changed

+5
-4
lines changed

2 files changed

+5
-4
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ blech_unit_characteristics.py → blech_data_summary.py → grade_dataset.py
204204

205205
### Workflow Walkthrough
206206
<details>
207-
207+
208208
*This section is being expanded, in progress.*
209209

210210
Open a terminal, and run:
@@ -249,7 +249,7 @@ bash blech_clust_post.sh # Perform steps up to PSTH generation
249249

250250
### Utilities
251251
<details>
252-
252+
253253
#### utils/infer_rnn_rates.py
254254

255255
This script is used to infer firing rates from spike trains using a Recurrent Neural Network (RNN). The RNN is trained on the spike trains and the firing rates are inferred from the trained model. The script uses the `BlechRNN` library for training the RNN.
@@ -285,7 +285,7 @@ optional arguments:
285285
4500])
286286
```
287287
</details>
288-
288+
289289
### Test Dataset
290290
We are grateful to Brandeis University Google Filestream for hosting this dataset <br>
291291
Data to test workflow available at:<br>

tests/test_blech_units_plot.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,8 @@ def test_plot_unit_summary(self, mock_gen_isi_hist, mock_waveforms_datashader,
138138
"""Test the plot_unit_summary function"""
139139
# Setup mock figure and axes
140140
mock_fig = MagicMock()
141-
mock_ax = np.array([[MagicMock(), MagicMock()], [MagicMock(), MagicMock()]])
141+
mock_ax = np.array([[MagicMock(), MagicMock()],
142+
[MagicMock(), MagicMock()]])
142143
mock_subplots.return_value = (mock_fig, mock_ax)
143144

144145
# Setup mock waveforms_datashader

0 commit comments

Comments
 (0)