Skip to content

Commit fc91859

Browse files
committed
move figures to separate folder
1 parent 7c90161 commit fc91859

13 files changed

+64
-97
lines changed

CHANGELOG.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@ and this project adheres to [Semantic Versioning v2.0.0](https://semver.org/spec
1212
- Add build scripts
1313
- Add mathematica program
1414
- Add table for seventh powers
15+
- Move figures to separate folder
1516

1617
## [1.0.2] - 2024-09-25
1718

474 Bytes
Binary file not shown.

src/auxiliary/oeis_row_sums_cubes.tex

Lines changed: 0 additions & 19 deletions
This file was deleted.

src/auxiliary/differences_of_cubes.tex renamed to src/figures/01_fig_finite_differences_cubes.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,5 +14,5 @@
1414
7 & 343 & & &
1515
\end{tabular}
1616
\end{center}
17-
\caption{Table of finite differences of the polynomial $n^3$.} \label{tab:table}
18-
\end{table}
17+
\caption{Table of finite differences of the polynomial $n^3$.} \label{tab:differneces-of-cubes}
18+
\end{table}
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
\begin{table}[H]
2+
\setlength\extrarowheight{-6pt}
3+
\begin{tabular}{c|cccccccc}
4+
$n/k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5+
\hline
6+
0 & 1 & & & & & & & \\
7+
1 & 1 & 1 & & & & & & \\
8+
2 & 1 & 7 & 1 & & & & & \\
9+
3 & 1 & 13 & 13 & 1 & & & & \\
10+
4 & 1 & 19 & 25 & 19 & 1 & & & \\
11+
5 & 1 & 25 & 37 & 37 & 25 & 1 & & \\
12+
6 & 1 & 31 & 49 & 55 & 49 & 31 & 1 & \\
13+
7 & 1 & 37 & 61 & 73 & 73 & 61 & 37 & 1
14+
\end{tabular}
15+
\caption{Values of $6k(n-k) + 1$.
16+
See the OEIS entry: \href{https://oeis.org/A287326}{\texttt{A287326}}~\cite{kolosov2017third}.}
17+
\label{tab:triangle_row_sums_give_cubes}
18+
\end{table}
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
\begin{table}[H]
2+
\setlength\extrarowheight{-6pt}
3+
\begin{tabular}{c|cccccccc}
4+
$n/k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5+
\hline
6+
0 & 1 & & & & & & & \\
7+
1 & 1 & 1 & & & & & & \\
8+
2 & 1 & 31 & 1 & & & & & \\
9+
3 & 1 & 121 & 121 & 1 & & & & \\
10+
4 & 1 & 271 & 481 & 271 & 1 & & & \\
11+
5 & 1 & 481 & 1081 & 1081 & 481 & 1 & & \\
12+
6 & 1 & 751 & 1921 & 2431 & 1921 & 751 & 1 & \\
13+
7 & 1 & 1081 & 3001 & 4321 & 4321 & 3001 & 1081 & 1
14+
\end{tabular}
15+
\caption{Values of $30k^2(n-k)^2 + 1$.
16+
See the OEIS entry \href{https://oeis.org/A300656}{\texttt{A300656}}~\cite{kolosov2018fifth}.}
17+
\label{tab:row-sums-gives-fifth-power}
18+
\end{table}

src/auxiliary/coefficients_a_table.tex renamed to src/figures/05_fig_coefficients_a.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,6 @@
1414
7 & 1 & -450054 & 491400 & -60060 & 0 & 0 & 0 & 51480
1515
\end{tabular}
1616
\end{center}
17-
\caption{Coefficients $\coeffA{m}{r}$. See the OEIS entries (two links to references).}
17+
\caption{Coefficients $\coeffA{m}{r}$. See OEIS sequences~\cite{kolosov2018numerator,kolosov2018denominator}.}
1818
\label{tab:table_of_coefficients_a}
19-
\end{table}
19+
\end{table}

src/sections/01_introduction/introduction.tex

Lines changed: 19 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -1,22 +1,23 @@
11
Considering the table of forward finite differences of the polynomial $n^3$
2-
\begin{table}[H]
3-
\begin{center}
4-
\setlength\extrarowheight{-6pt}
5-
\begin{tabular}{c|cccc}
6-
$n$ & $n^3$ & $\Delta(n^3)$ & $\Delta^2(n^3)$ & $\Delta^3(n^3)$ \\
7-
\hline
8-
0 & 0 & 1 & 6 & 6 \\
9-
1 & 1 & 7 & 12 & 6 \\
10-
2 & 8 & 19 & 18 & 6 \\
11-
3 & 27 & 37 & 24 & 6 \\
12-
4 & 64 & 61 & 30 & 6 \\
13-
5 & 125 & 91 & 36 & \\
14-
6 & 216 & 127 & & \\
15-
7 & 343 & & &
16-
\end{tabular}
17-
\end{center}
18-
\caption{Table of finite differences of the polynomial $n^3$.} \label{tab:table}
19-
\end{table}
2+
%\begin{table}[H]
3+
% \begin{center}
4+
% \setlength\extrarowheight{-6pt}
5+
% \begin{tabular}{c|cccc}
6+
% $n$ & $n^3$ & $\Delta(n^3)$ & $\Delta^2(n^3)$ & $\Delta^3(n^3)$ \\
7+
% \hline
8+
% 0 & 0 & 1 & 6 & 6 \\
9+
% 1 & 1 & 7 & 12 & 6 \\
10+
% 2 & 8 & 19 & 18 & 6 \\
11+
% 3 & 27 & 37 & 24 & 6 \\
12+
% 4 & 64 & 61 & 30 & 6 \\
13+
% 5 & 125 & 91 & 36 & \\
14+
% 6 & 216 & 127 & & \\
15+
% 7 & 343 & & &
16+
% \end{tabular}
17+
% \end{center}
18+
% \caption{Table of finite differences of the polynomial $n^3$.} \label{tab:table}
19+
%\end{table}
20+
\input{figures/01_fig_finite_differences_cubes}
2021
We can easily observe that finite differences
2122
\footnote{\input{sections/01_introduction/footnote}}
2223
of the polynomial $n^3$ may be expressed according

src/sections/02_coefficients_via_system_of_equations/coefficients_via_system_of_equations_example1.tex

Lines changed: 1 addition & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -35,22 +35,5 @@
3535
\end{equation*}
3636
It is also clearly seen why the above identity is true evaluating the terms $6k(n-k) + 1$ over $0 \leq k \leq n$ as
3737
the following table shows
38-
\begin{table}[H]
39-
\setlength\extrarowheight{-6pt}
40-
\begin{tabular}{c|cccccccc}
41-
$n/k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
42-
\hline
43-
0 & 1 & & & & & & & \\
44-
1 & 1 & 1 & & & & & & \\
45-
2 & 1 & 7 & 1 & & & & & \\
46-
3 & 1 & 13 & 13 & 1 & & & & \\
47-
4 & 1 & 19 & 25 & 19 & 1 & & & \\
48-
5 & 1 & 25 & 37 & 37 & 25 & 1 & & \\
49-
6 & 1 & 31 & 49 & 55 & 49 & 31 & 1 & \\
50-
7 & 1 & 37 & 61 & 73 & 73 & 61 & 37 & 1
51-
\end{tabular}
52-
\caption{Values of $6k(n-k) + 1$.
53-
See the OEIS entry: \href{https://oeis.org/A287326}{\texttt{A287326}}~\cite{kolosov2017third}.}
54-
\label{tab:table-row-sums-gives-cubes}
55-
\end{table}
38+
\input{figures/02_fig_triangle_row_sums_give_cubes}
5639
\end{examp}

0 commit comments

Comments
 (0)