@@ -286,8 +286,7 @@ <h1>Source code for torch_molecule.generator.graph_dit.modeling_graph_dit</h1><d
286
286
287
287
< span class ="sd "> References</ span >
288
288
< span class ="sd "> ----------</ span >
289
- < span class ="sd "> - Graph Diffusion Transformers for Multi-Conditional Molecular Generation.</ span >
290
- < span class ="sd "> International Conference on Learning Representations (ICLR) 2024.</ span >
289
+ < span class ="sd "> - Graph Diffusion Transformers for Multi-Conditional Molecular Generation. NeurIPS 2024.</ span >
291
290
< span class ="sd "> https://openreview.net/forum?id=cfrDLD1wfO</ span >
292
291
< span class ="sd "> - Implementation: https://github.com/liugangcode/Graph-DiT</ span >
293
292
@@ -569,9 +568,9 @@ <h1>Source code for torch_molecule.generator.graph_dit.modeling_graph_dit</h1><d
569
568
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> fitting_epoch</ span > < span class ="o "> =</ span > < span class ="mi "> 0</ span >
570
569
< span class ="k "> for</ span > < span class ="n "> epoch</ span > < span class ="ow "> in</ span > < span class ="nb "> range</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> epochs</ span > < span class ="p "> ):</ span >
571
570
< span class ="n "> train_losses</ span > < span class ="o "> =</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> _train_epoch</ span > < span class ="p "> (</ span > < span class ="n "> train_loader</ span > < span class ="p "> ,</ span > < span class ="n "> optimizer</ span > < span class ="p "> ,</ span > < span class ="n "> epoch</ span > < span class ="p "> )</ span >
572
- < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> fitting_loss</ span > < span class ="o "> .</ span > < span class ="n "> append</ span > < span class ="p "> (</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> mean</ span > < span class ="p "> (</ span > < span class ="n "> train_losses</ span > < span class ="p "> ))</ span >
571
+ < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> fitting_loss</ span > < span class ="o "> .</ span > < span class ="n "> append</ span > < span class ="p "> (</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> mean</ span > < span class ="p "> (</ span > < span class ="n "> train_losses</ span > < span class ="p "> )</ span > < span class =" o " > . </ span > < span class =" n " > item </ span > < span class =" p " > () )</ span >
573
572
< span class ="k "> if</ span > < span class ="n "> scheduler</ span > < span class ="p "> :</ span >
574
- < span class ="n "> scheduler</ span > < span class ="o "> .</ span > < span class ="n "> step</ span > < span class ="p "> (</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> mean</ span > < span class ="p "> (</ span > < span class ="n "> train_losses</ span > < span class ="p "> ))</ span >
573
+ < span class ="n "> scheduler</ span > < span class ="o "> .</ span > < span class ="n "> step</ span > < span class ="p "> (</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> mean</ span > < span class ="p "> (</ span > < span class ="n "> train_losses</ span > < span class ="p "> )</ span > < span class =" o " > . </ span > < span class =" n " > item </ span > < span class =" p " > () )</ span >
575
574
576
575
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> fitting_epoch</ span > < span class ="o "> =</ span > < span class ="n "> epoch</ span >
577
576
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> is_fitted_</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span >
0 commit comments