@@ -26,38 +26,48 @@ class GraphDITMolecularGenerator(BaseMolecularGenerator):
26
26
27
27
Reference Code: https://github.com/liugangcode/Graph-DiT
28
28
29
- :param num_layer: Number of transformer layers, defaults to 6
30
- :type num_layer: int, optional
31
- :param hidden_size: Dimension of hidden layers, defaults to 1152
32
- :type hidden_size: int, optional
33
- :param dropout: Dropout rate for transformer layers, defaults to 0.0
34
- :type dropout: float, optional
35
- :param drop_condition: Dropout rate for condition embedding, defaults to 0.0
36
- :type drop_condition: float, optional
37
- :param num_head: Number of attention heads in transformer, defaults to 16
38
- :type num_head: int, optional
39
- :param mlp_ratio: Ratio of MLP hidden dimension to transformer hidden dimension, defaults to 4
40
- :type mlp_ratio: float, optional
41
- :param task_type: List specifying type of each task ('regression' or 'classification'), defaults to []
42
- :type task_type: List[str], optional
43
- :param timesteps: Number of diffusion timesteps, defaults to 500
44
- :type timesteps: int, optional
45
- :param batch_size: Batch size for training, defaults to 128
46
- :type batch_size: int, optional
47
- :param epochs: Number of training epochs, defaults to 10000
48
- :type epochs: int, optional
49
- :param learning_rate: Learning rate for optimization, defaults to 0.0002
50
- :type learning_rate: float, optional
51
- :param grad_clip_value: Value for gradient clipping (None = no clipping), defaults to None
52
- :type grad_clip_value: Optional[float], optional
53
- :param weight_decay: Weight decay for optimization, defaults to 0.0
54
- :type weight_decay: float, optional
55
- :param lw_X: Loss weight for node reconstruction, defaults to 1
56
- :type lw_X: float, optional
57
- :param lw_E: Loss weight for edge reconstruction, defaults to 10
58
- :type lw_E: float, optional
59
- :param guide_scale: Scale factor for classifier-free guidance during sampling, defaults to 2.0
60
- :type guide_scale: float, optional
29
+ Parameters
30
+ ----------
31
+ num_layer : int, default=6
32
+ Number of transformer layers
33
+ hidden_size : int, default=1152
34
+ Dimension of hidden layers
35
+ dropout : float, default=0.0
36
+ Dropout rate for transformer layers
37
+ drop_condition : float, default=0.0
38
+ Dropout rate for condition embedding
39
+ num_head : int, default=16
40
+ Number of attention heads in transformer
41
+ mlp_ratio : float, default=4
42
+ Ratio of MLP hidden dimension to transformer hidden dimension
43
+ task_type : List[str], default=[]
44
+ List specifying type of each task ('regression' or 'classification')
45
+ timesteps : int, default=500
46
+ Number of diffusion timesteps
47
+ batch_size : int, default=128
48
+ Batch size for training
49
+ epochs : int, default=10000
50
+ Number of training epochs
51
+ learning_rate : float, default=0.0002
52
+ Learning rate for optimization
53
+ grad_clip_value : Optional[float], default=None
54
+ Value for gradient clipping (None = no clipping)
55
+ weight_decay : float, default=0.0
56
+ Weight decay for optimization
57
+ lw_X : float, default=1
58
+ Loss weight for node reconstruction
59
+ lw_E : float, default=5
60
+ Loss weight for edge reconstruction
61
+ guide_scale : float, default=2.0
62
+ Scale factor for classifier-free guidance during sampling
63
+ use_lr_scheduler : bool, default=False
64
+ Whether to use learning rate scheduler
65
+ scheduler_factor : float, default=0.5
66
+ Factor by which to reduce learning rate on plateau
67
+ scheduler_patience : int, default=5
68
+ Number of epochs with no improvement after which learning rate will be reduced
69
+ verbose : bool, default=False
70
+ Whether to display progress bars and logs
61
71
"""
62
72
# Model parameters
63
73
num_layer : int = 6
0 commit comments