Skip to content

Commit 369240f

Browse files
authored
Merge pull request #4 from wesbz/soundstream
Updating the RVQ to better match Soundstream's algorithm
2 parents b1f5d8e + d4f0665 commit 369240f

File tree

1 file changed

+53
-37
lines changed

1 file changed

+53
-37
lines changed

vector_quantize_pytorch/vector_quantize_pytorch.py

Lines changed: 53 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,8 @@ def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False):
3737
if use_cosine_sim:
3838
dists = samples @ means.t()
3939
else:
40-
diffs = rearrange(samples, 'n d -> n () d') - rearrange(means, 'c d -> () c d')
40+
diffs = rearrange(samples, 'n d -> n () d') \
41+
- rearrange(means, 'c d -> () c d')
4142
dists = -(diffs ** 2).sum(dim = -1)
4243

4344
buckets = dists.max(dim = -1).indices
@@ -66,7 +67,8 @@ def __init__(
6667
kmeans_init = False,
6768
kmeans_iters = 10,
6869
decay = 0.8,
69-
eps = 1e-5
70+
eps = 1e-5,
71+
threshold_ema_dead_code = 2
7072
):
7173
super().__init__()
7274
self.decay = decay
@@ -76,6 +78,7 @@ def __init__(
7678
self.codebook_size = codebook_size
7779
self.kmeans_iters = kmeans_iters
7880
self.eps = eps
81+
self.threshold_ema_dead_code = threshold_ema_dead_code
7982

8083
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
8184
self.register_buffer('cluster_size', torch.zeros(codebook_size))
@@ -89,9 +92,22 @@ def init_embed_(self, data):
8992
self.initted.data.copy_(torch.Tensor([True]))
9093

9194
def replace(self, samples, mask):
92-
modified_codebook = torch.where(mask[..., None], sample_vectors(samples, self.codebook_size), self.embed)
95+
modified_codebook = torch.where(
96+
mask[..., None],
97+
sample_vectors(samples, self.codebook_size),
98+
self.embed
99+
)
93100
self.embed.data.copy_(modified_codebook)
94101

102+
def expire_codes_(self, batch_samples):
103+
if self.threshold_ema_dead_code == 0:
104+
return
105+
106+
expired_codes = self.cluster_size < self.threshold_ema_dead_code
107+
if torch.any(expired_codes):
108+
batch_samples = rearrange(batch_samples, '... d -> (...) d')
109+
self.replace(batch_samples, mask = expired_codes)
110+
95111
def forward(self, x):
96112
shape, dtype = x.shape, x.dtype
97113
flatten = rearrange(x, '... d -> (...) d')
@@ -107,7 +123,7 @@ def forward(self, x):
107123
)
108124

109125
embed_ind = dist.max(dim = -1).indices
110-
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(x.dtype)
126+
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
111127
embed_ind = embed_ind.view(*shape[:-1])
112128
quantize = F.embedding(embed_ind, self.embed)
113129

@@ -118,6 +134,7 @@ def forward(self, x):
118134
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
119135
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
120136
self.embed.data.copy_(embed_normalized)
137+
self.expire_codes_(x)
121138

122139
return quantize, embed_ind
123140

@@ -129,7 +146,8 @@ def __init__(
129146
kmeans_init = False,
130147
kmeans_iters = 10,
131148
decay = 0.8,
132-
eps = 1e-5
149+
eps = 1e-5,
150+
threshold_ema_dead_code = 2
133151
):
134152
super().__init__()
135153
self.decay = decay
@@ -142,20 +160,35 @@ def __init__(
142160
self.codebook_size = codebook_size
143161
self.kmeans_iters = kmeans_iters
144162
self.eps = eps
163+
self.threshold_ema_dead_code = threshold_ema_dead_code
145164

146165
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
147166
self.register_buffer('embed', embed)
148167

149168
def init_embed_(self, data):
150-
embed = kmeans(data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True)
169+
embed = kmeans(data, self.codebook_size, self.kmeans_iters,
170+
use_cosine_sim = True)
151171
self.embed.data.copy_(embed)
152172
self.initted.data.copy_(torch.Tensor([True]))
153173

154174
def replace(self, samples, mask):
155175
samples = l2norm(samples)
156-
modified_codebook = torch.where(mask[..., None], sample_vectors(samples, self.codebook_size), self.embed)
176+
modified_codebook = torch.where(
177+
mask[..., None],
178+
sample_vectors(samples, self.codebook_size),
179+
self.embed
180+
)
157181
self.embed.data.copy_(modified_codebook)
158182

183+
def expire_codes_(self, batch_samples):
184+
if self.threshold_ema_dead_code == 0:
185+
return
186+
187+
expired_codes = self.cluster_size < self.threshold_ema_dead_code
188+
if torch.any(expired_codes):
189+
batch_samples = rearrange(batch_samples, '... d -> (...) d')
190+
self.replace(batch_samples, mask = expired_codes)
191+
159192
def forward(self, x):
160193
shape, dtype = x.shape, x.dtype
161194
flatten = rearrange(x, '... d -> (...) d')
@@ -180,8 +213,10 @@ def forward(self, x):
180213
embed_sum = flatten.t() @ embed_onehot
181214
embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
182215
embed_normalized = l2norm(embed_normalized)
183-
embed_normalized = torch.where(zero_mask[..., None], embed, embed_normalized)
216+
embed_normalized = torch.where(zero_mask[..., None], embed,
217+
embed_normalized)
184218
ema_inplace(self.embed, embed_normalized, self.decay)
219+
self.expire_codes_(x)
185220

186221
return quantize, embed_ind
187222

@@ -200,59 +235,41 @@ def __init__(
200235
kmeans_init = False,
201236
kmeans_iters = 10,
202237
use_cosine_sim = False,
203-
max_codebook_misses_before_expiry = 0
238+
threshold_ema_dead_code = 0
204239
):
205240
super().__init__()
206241
n_embed = default(n_embed, codebook_size)
207242

208243
codebook_dim = default(codebook_dim, dim)
209244
requires_projection = codebook_dim != dim
210-
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
211-
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
245+
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection \
246+
else nn.Identity()
247+
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection \
248+
else nn.Identity()
212249

213250
self.eps = eps
214251
self.commitment = commitment
215252

216-
klass = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook
253+
codebook_class = EuclideanCodebook if not use_cosine_sim \
254+
else CosineSimCodebook
217255

218-
self._codebook = klass(
256+
self._codebook = codebook_class(
219257
dim = codebook_dim,
220258
codebook_size = n_embed,
221259
kmeans_init = kmeans_init,
222260
kmeans_iters = kmeans_iters,
223261
decay = decay,
224-
eps = eps
262+
eps = eps,
263+
threshold_ema_dead_code = threshold_ema_dead_code
225264
)
226265

227266
self.codebook_size = codebook_size
228-
self.max_codebook_misses_before_expiry = max_codebook_misses_before_expiry
229-
230-
if max_codebook_misses_before_expiry > 0:
231-
codebook_misses = torch.zeros(codebook_size)
232-
self.register_buffer('codebook_misses', codebook_misses)
233267

234268
@property
235269
def codebook(self):
236270
return self._codebook.codebook
237271

238-
def expire_codes_(self, embed_ind, batch_samples):
239-
if self.max_codebook_misses_before_expiry == 0:
240-
return
241-
242-
embed_ind = rearrange(embed_ind, '... -> (...)')
243-
misses = torch.bincount(embed_ind, minlength = self.codebook_size) == 0
244-
self.codebook_misses += misses
245-
246-
expired_codes = self.codebook_misses >= self.max_codebook_misses_before_expiry
247-
if not torch.any(expired_codes):
248-
return
249-
250-
self.codebook_misses.masked_fill_(expired_codes, 0)
251-
batch_samples = rearrange(batch_samples, '... d -> (...) d')
252-
self._codebook.replace(batch_samples, mask = expired_codes)
253-
254272
def forward(self, x):
255-
dtype = x.dtype
256273
x = self.project_in(x)
257274

258275
quantize, embed_ind = self._codebook(x)
@@ -262,7 +279,6 @@ def forward(self, x):
262279
if self.training:
263280
commit_loss = F.mse_loss(quantize.detach(), x) * self.commitment
264281
quantize = x + (quantize - x).detach()
265-
self.expire_codes_(embed_ind, x)
266282

267283
quantize = self.project_out(quantize)
268284
return quantize, embed_ind, commit_loss

0 commit comments

Comments
 (0)