Skip to content

Commit 56ae6e1

Browse files
author
Raphael Sonabend
authored
Merge branch 'master' into dev
2 parents 44cd667 + 58ff245 commit 56ae6e1

File tree

78 files changed

+632
-400
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

78 files changed

+632
-400
lines changed

.editorconfig

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
# See http://editorconfig.org
2+
root = true
3+
4+
[*]
5+
charset = utf8
6+
end_of_line = lf
7+
insert_final_newline = true
8+
indent_style = space
9+
trim_trailing_whitespace = true
10+
11+
[*.{r,R,md,Rmd}]
12+
indent_size = 2
13+
14+
[*.{c,h}]
15+
indent_size = 4
16+
17+
[*.{cpp,hpp}]
18+
indent_size = 4
19+
20+
[{NEWS.md,DESCRIPTION,LICENSE}]
21+
max_line_length = 80

DESCRIPTION

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -44,6 +44,7 @@ Imports:
4444
R6,
4545
survival
4646
Suggests:
47+
bibtex,
4748
flexsurv,
4849
gbm,
4950
glmnet,
@@ -68,6 +69,7 @@ LazyData: true
6869
NeedsCompilation: no
6970
Roxygen: list(markdown = TRUE, r6 = FALSE)
7071
RoxygenNote: 7.0.2
72+
RdMacros: mlr3misc
7173
Collate:
7274
'LearnerDensity.R'
7375
'LearnerDensityHist.R'

NEWS.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,8 @@
44
* Added notes to IGS documentation regarding default methods and comparison to other packages
55
* Added `method` to `MeasureSurvIntegrated` constructor and fields
66
* Fixed mistake in documentation of: `TaskSurv`, `MeasureSurvUnoC`
7-
* Fixed errors in r-patched-solaris
87
* Added missing `LearnerSurvRpart` parameter `parms` and `cost`
9-
8+
* Fixed errors in r-patched-solaris and r-devel debian-clang
109

1110
# mlr3proba 0.1.0
1211

R/LearnerSurvBlackboost.R

Lines changed: 6 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -8,22 +8,15 @@
88
#' @template learner_boost
99
#'
1010
#' @references
11-
#' Peter Buehlmann and Torsten Hothorn (2007),
12-
#' Boosting algorithms: regularization, prediction and model fitting.
13-
#' Statistical Science, 22(4), 477–505.
11+
#' \cite{mlr3proba}{buehlmann_2007}
1412
#'
15-
#' Torsten Hothorn, Kurt Hornik and Achim Zeileis (2006).
16-
#' Unbiased recursive partitioning: A conditional inference framework.
17-
#' Journal of Computational and Graphical Statistics, 15(3), 651–674.
13+
#' \cite{mlr3proba}{hothorn_2006}
1814
#'
19-
#' Yoav Freund and Robert E. Schapire (1996), Experiments with a new boosting algorithm.
20-
#' In Machine Learning: Proc. Thirteenth International Conference, 148–156.
15+
#' \cite{mlr3proba}{freund_1996}
16+
#'
17+
#' \cite{mlr3proba}{friedman_2001}
2118
#'
22-
#' Jerome H. Friedman (2001), Greedy function approximation: A gradient boosting machine.
23-
#' The Annals of Statistics, 29, 1189–1232.
24-
#'
25-
#' Greg Ridgeway (1999), The state of boosting.
26-
#' Computing Science and Statistics, 31, 172–181.
19+
#' \cite{mlr3proba}{ridgeway_1999}
2720
#'
2821
#' @export
2922
#' @examples

R/LearnerSurvCVGlmnet.R

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -11,10 +11,7 @@
1111
#' \CRANpkg{mlr3tuning} and [LearnerSurvGlmnet] will likely give better results.
1212
#'
1313
#' @references
14-
#' Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010).
15-
#' Regularization Paths for Generalized Linear Models via Coordinate Descent.
16-
#' Journal of Statistical Software, 33(1), 1-22.
17-
#' \doi{10.18637/jss.v033.i01}.
14+
#' \cite{mlr3proba}{friedman_2010}
1815
#'
1916
#' @export
2017
LearnerSurvCVGlmnet = R6Class("LearnerSurvCVGlmnet", inherit = LearnerSurv,

R/LearnerSurvCoxPH.R

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -6,10 +6,7 @@
66
#' @templateVar lp by [survival::predict.coxph()]
77
#'
88
#' @references
9-
#' Cox, David R. (1972).
10-
#' Regression models and life-tables.
11-
#' Journal of the Royal Statistical Society: Series B (Methodological) 34.2 (1972): 187-202.
12-
#' \doi{10.1111/j.2517-6161.1972.tb00899.x}.
9+
#' \cite{mlr3proba}{cox_1972}
1310
#'
1411
#' @export
1512
LearnerSurvCoxPH = R6Class("LearnerSurvCoxPH", inherit = LearnerSurv,

R/LearnerSurvFlexible.R

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -25,11 +25,7 @@
2525
#' of \eqn{1}s: \eqn{lp = \beta X}{lp = \betaX}.
2626
#'
2727
#' @references
28-
#' Royston, P. and Parmar, M. (2002).
29-
#' Flexible parametric proportional-hazards and proportional-odds models for censored survival data,
30-
#' with application to prognostic modelling and estimation of treatment effects.
31-
#' Statistics in Medicine, 21(15), 2175-2197.
32-
#' \doi{10.1002/sim.1203}.
28+
#' \cite{mlr3proba}{royston_2002}
3329
#'
3430
#' @template seealso_learner
3531
#' @export

R/LearnerSurvGBM.R

Lines changed: 9 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -9,29 +9,21 @@
99
#' in [gbm::gbm()] for survival analysis; parameter `keep.data` is set to `FALSE` for efficiency.
1010
#'
1111
#' @references
12-
#' Y. Freund and R.E. Schapire (1997)
13-
#' A decision-theoretic generalization of on-line learning and an application to boosting.
14-
#' Journal of Computer and System Sciences, 55(1):119-139.
12+
#' \cite{mlr3proba}{freund_1997}
1513
#'
16-
#' G. Ridgeway (1999). The state of boosting. Computing Science and Statistics 31:172-181.
14+
#' \cite{mlr3proba}{ridgeway_1999}
1715
#'
18-
#' J.H. Friedman, T. Hastie, R. Tibshirani (2000).
19-
#' Additive Logistic Regression: a Statistical View of Boosting. Annals of Statistics 28(2):337-374.
16+
#' \cite{mlr3proba}{friedman_2000}
2017
#'
21-
#' J.H. Friedman (2001).
22-
#' Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics 29(5):1189-1232.
18+
#' \cite{mlr3proba}{friedman_2001}
2319
#'
24-
#' J.H. Friedman (2002).
25-
#' Stochastic Gradient Boosting. Computational Statistics and Data Analysis 38(4):367-378.
20+
#' \cite{mlr3proba}{friedman_2001}
2621
#'
27-
#' B. Kriegler (2007).
28-
#' Cost-Sensitive Stochastic Gradient Boosting Within a Quantitative Regression Framework.
29-
#' Ph.D. Dissertation. University of California at Los Angeles, Los Angeles, CA, USA. Advisor(s) Richard A. Berk.
30-
#' \url{https://dl.acm.org/citation.cfm?id=1354603}
22+
#' \cite{mlr3proba}{friedman_2002}
3123
#'
32-
#' C. Burges (2010).
33-
#' From RankNet to LambdaRank to LambdaMART: An Overview.
34-
#' Microsoft Research Technical Report MSR-TR-2010-82.
24+
#' \cite{mlr3proba}{kriegler_2007}
25+
#'
26+
#' \cite{mlr3proba}{burges_2010}
3527
#'
3628
#' @export
3729
LearnerSurvGBM = R6Class("LearnerSurvGBM", inherit = LearnerSurv,

R/LearnerSurvGamboost.R

Lines changed: 6 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -14,28 +14,17 @@
1414
#' specific definition of the corresponding base-learner.
1515
#'
1616
#' @references
17-
#' Peter Buehlmann and Bin Yu (2003), Boosting with the L2 loss: regression and classification.
18-
#' Journal of the American Statistical Association, 98, 324–339.
17+
#' \cite{mlr3proba}{buehlmann_2003}
1918
#'
20-
#' Peter Buehlmann and Torsten Hothorn (2007),
21-
#' Boosting algorithms: regularization, prediction and model fitting.
22-
#' Statistical Science, 22(4), 477–505.
19+
#' \cite{mlr3proba}{buehlmann_2007}
2320
#'
24-
#' Thomas Kneib, Torsten Hothorn and Gerhard Tutz (2009),
25-
#' Variable selection and model choice in geoadditive regression models,
26-
#' Biometrics, 65(2), 626–634.
21+
#' \cite{mlr3proba}{kneib_2008}
2722
#'
28-
#' Matthias Schmid and Torsten Hothorn (2008),
29-
#' Boosting additive models using component-wise P-splines as base-learners.
30-
#' Computational Statistics \& Data Analysis, 53(2), 298–311.
23+
#' \cite{mlr3proba}{schmid_2008}
3124
#'
32-
#' Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Mattthias Schmid and Benjamin Hofner (2010),
33-
#' Model-based Boosting 2.0. Journal of Machine Learning Research, 11, 2109 – 2113.
25+
#' \cite{mlr3proba}{hothorn_2010}
3426
#'
35-
#' Benjamin Hofner, Andreas Mayr, Nikolay Robinzonov and Matthias Schmid (2014).
36-
#' Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost.
37-
#' Computational Statistics, 29, 3–35.
38-
#' \doi{10.1007/s00180-012-0382-5}
27+
#' \cite{mlr3proba}{hofner_2012}
3928
#'
4029
#' @export
4130
#' @examples

R/LearnerSurvGlmboost.R

Lines changed: 5 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -8,20 +8,15 @@
88
#' @template learner_boost
99
#'
1010
#' @references
11-
#' Peter Buehlmann and Bin Yu (2003), Boosting with the L2 loss: regression and classification.
12-
#' Journal of the American Statistical Association, 98, 324–339.
11+
#' \cite{mlr3proba}{buehlmann_2003}
1312
#'
14-
#' Peter Buehlmann (2006), Boosting for high-dimensional linear models. The Annals of
15-
#' Statistics, 34(2), 559–583.
13+
#' \cite{mlr3proba}{buehlmann_2006}
1614
#'
17-
#' Peter Buehlmann and Torsten Hothorn (2007), Boosting algorithms: regularization,
18-
#' prediction and model fitting. Statistical Science, 22(4), 477–505.
15+
#' \cite{mlr3proba}{buehlmann_2007}
1916
#'
20-
#' Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Mattthias Schmid and Benjamin Hofner
21-
#' (2010), Model-based Boosting 2.0. Journal of Machine Learning Research, 11, 2109–2113.
17+
#' \cite{mlr3proba}{hothorn_2010}
2218
#'
23-
#' Benjamin Hofner, Andreas Mayr, Nikolay Robinzonov and Matthias Schmid (2014). Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29, 3–35.
24-
#' \doi{10.1007/s00180-012-0382-5}.
19+
#' \cite{mlr3proba}{hofner_2012}
2520
#'
2621
#' @export
2722
#' @examples

0 commit comments

Comments
 (0)