@@ -15,12 +15,7 @@ class CelfEndpoints(ABC):
15
15
Abstract base class defining the API for the Cost Effective Lazy Forward (CELF) algorithm.
16
16
17
17
The CELF algorithm aims to find k nodes that maximize the expected spread of influence
18
- in the network. It's an optimization of the greedy algorithm for influence maximization
19
- that uses lazy evaluation to improve performance while maintaining the same approximation
20
- guarantees.
21
-
22
- The algorithm works by iteratively selecting nodes that provide the maximum marginal
23
- influence gain, using a lazy evaluation strategy to avoid redundant computations.
18
+ in the network.
24
19
"""
25
20
26
21
@abstractmethod
@@ -53,10 +48,8 @@ def mutate(
53
48
The property name to store the influence spread value for each selected node
54
49
propagation_probability : Optional[float], default=None
55
50
The probability that influence spreads from one node to another.
56
- If not specified, uses the default value from the algorithm configuration.
57
51
monte_carlo_simulations : Optional[int], default=None
58
- The number of Monte Carlo simulations used to estimate influence spread.
59
- Higher values provide more accurate estimates but increase computation time.
52
+ The number of Monte-Carlo simulations.
60
53
random_seed : Optional[Any], default=None
61
54
Random seed for reproducible results. If not specified, uses a random seed.
62
55
relationship_types : Optional[List[str]], default=None
@@ -71,7 +64,7 @@ def mutate(
71
64
log_progress : Optional[bool], default=None
72
65
Whether to log progress of the algorithm execution
73
66
username : Optional[str], default=None
74
- The username to attribute the procedure run to for auditing purposes
67
+ The username to attribute the procedure run to
75
68
concurrency : Optional[Any], default=None
76
69
The number of concurrent threads used for the algorithm execution.
77
70
If not specified, uses the default concurrency level.
@@ -112,10 +105,8 @@ def stats(
112
105
The number of nodes to select as the seed set for influence maximization
113
106
propagation_probability : Optional[float], default=None
114
107
The probability that influence spreads from one node to another.
115
- If not specified, uses the default value from the algorithm configuration.
116
108
monte_carlo_simulations : Optional[int], default=None
117
- The number of Monte Carlo simulations used to estimate influence spread.
118
- Higher values provide more accurate estimates but increase computation time.
109
+ The number of Monte-Carlo simulations.
119
110
random_seed : Optional[Any], default=None
120
111
Random seed for reproducible results. If not specified, uses a random seed.
121
112
relationship_types : Optional[List[str]], default=None
@@ -130,7 +121,7 @@ def stats(
130
121
log_progress : Optional[bool], default=None
131
122
Whether to log progress of the algorithm execution
132
123
username : Optional[str], default=None
133
- The username to attribute the procedure run to for auditing purposes
124
+ The username to attribute the procedure run to
134
125
concurrency : Optional[Any], default=None
135
126
The number of concurrent threads used for the algorithm execution.
136
127
If not specified, uses the default concurrency level.
@@ -171,10 +162,8 @@ def stream(
171
162
The number of nodes to select as the seed set for influence maximization
172
163
propagation_probability : Optional[float], default=None
173
164
The probability that influence spreads from one node to another.
174
- If not specified, uses the default value from the algorithm configuration.
175
165
monte_carlo_simulations : Optional[int], default=None
176
- The number of Monte Carlo simulations used to estimate influence spread.
177
- Higher values provide more accurate estimates but increase computation time.
166
+ The number of Monte-Carlo simulations.
178
167
random_seed : Optional[Any], default=None
179
168
Random seed for reproducible results. If not specified, uses a random seed.
180
169
relationship_types : Optional[List[str]], default=None
@@ -189,7 +178,7 @@ def stream(
189
178
log_progress : Optional[bool], default=None
190
179
Whether to log progress of the algorithm execution
191
180
username : Optional[str], default=None
192
- The username to attribute the procedure run to for auditing purposes
181
+ The username to attribute the procedure run to
193
182
concurrency : Optional[Any], default=None
194
183
The number of concurrent threads used for the algorithm execution.
195
184
If not specified, uses the default concurrency level.
@@ -235,10 +224,8 @@ def write(
235
224
The property name to store the influence spread value for each selected node in the database
236
225
propagation_probability : Optional[float], default=None
237
226
The probability that influence spreads from one node to another.
238
- If not specified, uses the default value from the algorithm configuration.
239
227
monte_carlo_simulations : Optional[int], default=None
240
- The number of Monte Carlo simulations used to estimate influence spread.
241
- Higher values provide more accurate estimates but increase computation time.
228
+ The number of Monte-Carlo simulations.
242
229
random_seed : Optional[Any], default=None
243
230
Random seed for reproducible results. If not specified, uses a random seed.
244
231
relationship_types : Optional[List[str]], default=None
@@ -253,7 +240,7 @@ def write(
253
240
log_progress : Optional[bool], default=None
254
241
Whether to log progress of the algorithm execution
255
242
username : Optional[str], default=None
256
- The username to attribute the procedure run to for auditing purposes
243
+ The username to attribute the procedure run to
257
244
concurrency : Optional[Any], default=None
258
245
The number of concurrent threads used for the algorithm execution.
259
246
If not specified, uses the default concurrency level.
@@ -297,10 +284,8 @@ def estimate(
297
284
The number of nodes to select as the seed set for influence maximization.
298
285
propagation_probability : Optional[float], default=None
299
286
The probability that influence spreads from one node to another.
300
- If not specified, uses the default value from the algorithm configuration.
301
287
monte_carlo_simulations : Optional[int], default=None
302
- The number of Monte Carlo simulations used to estimate influence spread.
303
- Higher values provide more accurate estimates but increase computation time.
288
+ The number of Monte-Carlo simulations.
304
289
random_seed : Optional[Any], default=None
305
290
Random seed for reproducible results. If not specified, uses a random seed.
306
291
relationship_types : Optional[List[str]], default=None
0 commit comments