@@ -5,10 +5,10 @@ NEST performance benchmarks
5
5
6
6
7
7
NEST performance is continuously monitored and improved across various network sizes.
8
- Here we show benchmarking results for NEST version 3.8 on Jureca-DC.
8
+ Here we show benchmarking results for NEST version 3.8 on Jureca-DC [1 ]_.
9
+ The benchmarking framework and the structure of the graphs is described in [2 ]_.
9
10
10
-
11
- Strong scaling experiment of the Microcircuit model [1 ]_
11
+ Strong scaling experiment of the Microcircuit model [3 ]_
12
12
---------------------------------------------------------
13
13
14
14
.. grid :: 1 1 1 1
@@ -26,14 +26,16 @@ Strong scaling experiment of the Microcircuit model [1]_
26
26
:class: sd-align-minor-center
27
27
28
28
29
- * The model has ~80 000 neurons and ~300 million synapses
29
+ * The model has ~80 000 neurons and ~300 million synapses, minimal delay 0.1 ms
30
+ * 2 MPI processes per node, 64 threads per MPI process
30
31
* Increasing number of computing resources decrease simulation time
31
- * The model runs faster than real time
32
+ * Data averaged over 3 runs with different seeds, error bars indicate standard deviation
33
+ * The model runs faster than real time [4 ]_
32
34
33
35
34
36
35
37
36
- Strong scaling experiment of the Multi-area-model [2 ]_
38
+ Strong scaling experiment of the Multi-area-model [5 ]_
37
39
-------------------------------------------------------
38
40
39
41
.. grid :: 1 1 1 1
@@ -51,13 +53,15 @@ Strong scaling experiment of the Multi-area-model [2]_
51
53
:columns: 10
52
54
:class: sd-align-minor-center
53
55
54
- * The model has ~4.1 million neurons and ~24 billion synapses
56
+ * The model has ~4.1 million neurons and ~24 billion synapses, minimal delay 0.1 ms
57
+ * 2 MPI processes per node, 64 threads per MPI process
55
58
* Steady decrease of run time with additional compute resources
59
+ * Data averaged over 3 runs with different seeds, error bars indicate standard deviation
56
60
57
61
58
62
59
63
60
- Weak scaling experiment of the HPC benchmark model [3 ]_
64
+ Weak scaling experiment of the HPC benchmark model [6 ]_
61
65
--------------------------------------------------------
62
66
63
67
.. grid :: 1 1 1 1
@@ -77,8 +81,10 @@ Weak scaling experiment of the HPC benchmark model [3]_
77
81
78
82
79
83
* The size of network scales proportionally with the computational resources used
80
- * Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses
84
+ * Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses, minimal delay 1.5 ms
85
+ * 2 MPI processes per node, 64 threads per MPI process
81
86
* The figure shows that NEST can handle massive networks and simulate them efficiently
87
+ * Data averaged over 3 runs with different seeds, error bars indicate standard deviation
82
88
83
89
84
90
.. seealso ::
@@ -92,15 +98,27 @@ Weak scaling experiment of the HPC benchmark model [3]_
92
98
References
93
99
----------
94
100
95
- .. [1 ] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical
101
+ .. [1 ] Juelich Supercomputing Centre. 2021. JURECA: Data Centric and Booster Modules implementing the Modular
102
+ Supercomputing Architecture at Jülich Supercomputing Centre. Journal of large-scale research facilities,
103
+ 7, A182. DOI: http://dx.doi.org/10.17815/jlsrf-7-182
104
+
105
+
106
+ .. [2 ] Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S,
107
+ Tetzlaff T, Diesmann M and Senk J (2022). A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations.
108
+ Frontiers in Neuroinformatics(16):837549. https://doi.org/10.3389/fninf.2022.837549
109
+
110
+ .. [3 ] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical
96
111
microcircuit: relating structure and activity in a full-scale spiking
97
112
network model. Cerebral Cortex. 24(3):785–806. DOI: `10.1093/cercor/bhs358 <https://doi.org/10.1093/cercor/bhs358 >`__.
98
113
114
+ .. [4 ] Kurth AC, Senk J, Terhorst D, Finnerty J, Diesmann M. 2022. Sub-realtime simulation of a neuronal network of natural density.
115
+ Neuromorphic computing and engineering 2(2), 021001
116
+ https://iopscience.iop.org/article/10.1088/2634-4386/ac55fc/meta
99
117
100
- .. [2 ] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale
101
- account of the network structure of macaque visual cortex. Brain Structure
102
- and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4
118
+ .. [5 ] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale
119
+ account of the network structure of macaque visual cortex. Brain Structure
120
+ and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4
103
121
104
- .. [3 ] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018.
105
- Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers.
106
- Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002
122
+ .. [6 ] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018.
123
+ Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers.
124
+ Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002
0 commit comments