Skip to content

Commit 0a46520

Browse files
Merge pull request #3259 from jessica-mitchell/update-benchmark-docs
Update benchmark result docs
2 parents 8f8789b + 0067409 commit 0a46520

File tree

1 file changed

+34
-16
lines changed

1 file changed

+34
-16
lines changed

doc/htmldoc/benchmark_results.rst

Lines changed: 34 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -5,10 +5,10 @@ NEST performance benchmarks
55

66

77
NEST performance is continuously monitored and improved across various network sizes.
8-
Here we show benchmarking results for NEST version 3.8 on Jureca-DC.
8+
Here we show benchmarking results for NEST version 3.8 on Jureca-DC [1]_.
9+
The benchmarking framework and the structure of the graphs is described in [2]_.
910

10-
11-
Strong scaling experiment of the Microcircuit model [1]_
11+
Strong scaling experiment of the Microcircuit model [3]_
1212
---------------------------------------------------------
1313

1414
.. grid:: 1 1 1 1
@@ -26,14 +26,16 @@ Strong scaling experiment of the Microcircuit model [1]_
2626
:class: sd-align-minor-center
2727

2828

29-
* The model has ~80 000 neurons and ~300 million synapses
29+
* The model has ~80 000 neurons and ~300 million synapses, minimal delay 0.1 ms
30+
* 2 MPI processes per node, 64 threads per MPI process
3031
* Increasing number of computing resources decrease simulation time
31-
* The model runs faster than real time
32+
* Data averaged over 3 runs with different seeds, error bars indicate standard deviation
33+
* The model runs faster than real time [4]_
3234

3335

3436

3537

36-
Strong scaling experiment of the Multi-area-model [2]_
38+
Strong scaling experiment of the Multi-area-model [5]_
3739
-------------------------------------------------------
3840

3941
.. grid:: 1 1 1 1
@@ -51,13 +53,15 @@ Strong scaling experiment of the Multi-area-model [2]_
5153
:columns: 10
5254
:class: sd-align-minor-center
5355

54-
* The model has ~4.1 million neurons and ~24 billion synapses
56+
* The model has ~4.1 million neurons and ~24 billion synapses, minimal delay 0.1 ms
57+
* 2 MPI processes per node, 64 threads per MPI process
5558
* Steady decrease of run time with additional compute resources
59+
* Data averaged over 3 runs with different seeds, error bars indicate standard deviation
5660

5761

5862

5963

60-
Weak scaling experiment of the HPC benchmark model [3]_
64+
Weak scaling experiment of the HPC benchmark model [6]_
6165
--------------------------------------------------------
6266

6367
.. grid:: 1 1 1 1
@@ -77,8 +81,10 @@ Weak scaling experiment of the HPC benchmark model [3]_
7781

7882

7983
* The size of network scales proportionally with the computational resources used
80-
* Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses
84+
* Largest network size in this diagram: ~5.8 million neurons and ~65 billion synapses, minimal delay 1.5 ms
85+
* 2 MPI processes per node, 64 threads per MPI process
8186
* The figure shows that NEST can handle massive networks and simulate them efficiently
87+
* Data averaged over 3 runs with different seeds, error bars indicate standard deviation
8288

8389

8490
.. seealso::
@@ -92,15 +98,27 @@ Weak scaling experiment of the HPC benchmark model [3]_
9298
References
9399
----------
94100

95-
.. [1] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical
101+
.. [1] Juelich Supercomputing Centre. 2021. JURECA: Data Centric and Booster Modules implementing the Modular
102+
Supercomputing Architecture at Jülich Supercomputing Centre. Journal of large-scale research facilities,
103+
7, A182. DOI: http://dx.doi.org/10.17815/jlsrf-7-182
104+
105+
106+
.. [2] Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S,
107+
Tetzlaff T, Diesmann M and Senk J (2022). A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations.
108+
Frontiers in Neuroinformatics(16):837549. https://doi.org/10.3389/fninf.2022.837549
109+
110+
.. [3] Potjans TC. and Diesmann M. 2014. The cell-type specific cortical
96111
microcircuit: relating structure and activity in a full-scale spiking
97112
network model. Cerebral Cortex. 24(3):785–806. DOI: `10.1093/cercor/bhs358 <https://doi.org/10.1093/cercor/bhs358>`__.
98113
114+
.. [4] Kurth AC, Senk J, Terhorst D, Finnerty J, Diesmann M. 2022. Sub-realtime simulation of a neuronal network of natural density.
115+
Neuromorphic computing and engineering 2(2), 021001
116+
https://iopscience.iop.org/article/10.1088/2634-4386/ac55fc/meta
99117
100-
.. [2] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale
101-
account of the network structure of macaque visual cortex. Brain Structure
102-
and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4
118+
.. [5] Schmidt M, Bakker R, Hilgetag CC, Diesmann M and van Albada SJ. 2018. Multi-scale
119+
account of the network structure of macaque visual cortex. Brain Structure
120+
and Function. 223: 1409 https://doi.org/10.1007/s00429-017-1554-4
103121
104-
.. [3] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018.
105-
Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers.
106-
Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002
122+
.. [6] Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018.
123+
Extremely scalable spiking neuronal network simulation code: From laptops to exacale computers.
124+
Frontiers in Neuroinformatics. 12. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00002

0 commit comments

Comments
 (0)