用自己的数据集进行tsne可视化分析 #710
Unanswered
huadouxiansheng
asked this question in
How-to
Replies: 1 comment
-
https://mmselfsup.readthedocs.io/en/1.x/user_guides/visualization.html#visualize-t-sne |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
如题用自己的数据集写 t-SNE 可视化的数据配置文件,需要修改哪些配置,还是目前不支持imagenet数据集外的数据集
我尝试修改
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
file_client_args = dict(backend='disk')
name = 'custom_val'
extract_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='mmcls.ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackSelfSupInputs'),
]
extract_dataloader = dict(
batch_size=8,
num_workers=4,
dataset=dict(
type=dataset_type,
data_root='data/custom_dataset/val',
# ann_file='meta/val.txt',
data_prefix='val',
pipeline=extract_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
pooling cfg
pool_cfg = dict(type='MultiPooling', in_indices=(1, 2, 3, 4))
但是显然有错
usage: visualize_tsne.py [-h] [--checkpoint CHECKPOINT] [--work-dir WORK_DIR]
[--launcher {none,pytorch,slurm,mpi}]
[--dataset-config DATASET_CONFIG]
[--max-num-class MAX_NUM_CLASS] [--seed SEED]
[--deterministic]
[--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]]
[--n-components N_COMPONENTS]
[--perplexity PERPLEXITY]
[--early-exaggeration EARLY_EXAGGERATION]
[--learning-rate LEARNING_RATE] [--n-iter N_ITER]
[--n-iter-without-progress N_ITER_WITHOUT_PROGRESS]
[--init INIT]
config
visualize_tsne.py: error: unrecognized arguments: --dataset_config configs/benchmarks/classification/tsne_custom.py
Beta Was this translation helpful? Give feedback.
All reactions