Skip to content

Commit c06b710

Browse files
committed
Update README
1 parent 397c178 commit c06b710

File tree

2 files changed

+18
-16
lines changed

2 files changed

+18
-16
lines changed

README.Rmd

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -37,8 +37,8 @@ pak::pkg_install("pbs-assess/sdmTMB", dependencies = TRUE)
3737

3838
There are some extra utilities in the [sdmTMBextra](https://github.com/pbs-assess/sdmTMBextra) package.
3939

40-
**Importantly**, it is recommended to use an optimized BLAS library, which will result in major speed improvements for TMB (and other) models in R (e.g., often 8-fold speed increases for sdmTMB models).
41-
Suggested installation instructions for [Mac users](https://www.mail-archive.com/r-sig-mac@r-project.org/msg06199.html), [Linux users](https://prdm0.github.io/ropenblas/), [Windows users](https://github.com/david-cortes/R-openblas-in-windows), and [Windows users without admin privileges](https://gist.github.com/seananderson/08a51e296a854f227a908ddd365fb9c1).
40+
**Importantly**, for large models, it is recommended to use an optimized BLAS library, which will result in major speed improvements for TMB (and other) models in R (e.g., often 8-fold speed increases for sdmTMB models).
41+
Suggested installation instructions for [Mac users](https://www.mail-archive.com/r-sig-mac@r-project.org/msg06199.html) (pre R 4.5.0) or [with OpenBLAS on a Mac](https://gist.github.com/seananderson/3c6cbf640ba566ce936c79442b9a6068), [Linux users](https://prdm0.github.io/ropenblas/), [Windows users](https://github.com/david-cortes/R-openblas-in-windows), and [Windows users without admin privileges](https://gist.github.com/seananderson/08a51e296a854f227a908ddd365fb9c1).
4242
To check that you've successfully linked the optimized BLAS, start a new session and run:
4343

4444
```r
@@ -47,7 +47,7 @@ X <- matrix(rnorm(m*k), nrow=m); Y <- matrix(rnorm(n*k), ncol=n)
4747
system.time(X %*% Y)
4848
```
4949

50-
The result ('elapsed') should take a fraction of a second (e.g., 0.03 s), not multiple seconds.
50+
The result ('elapsed') should take a fraction of a second (e.g., 0.03 s), not > 1 second.
5151

5252
## Overview
5353

@@ -94,7 +94,7 @@ mixed effects models with spatial and spatiotemporal random fields.
9494
In press at Journal of Statistical Software.
9595
bioRxiv preprint: <https://doi.org/10.1101/2022.03.24.485545>.
9696

97-
A list of (known) publications that use sdmTMB can be found [here](https://github.com/pbs-assess/sdmTMB/wiki/Publications-using-sdmTMB). Please use the above citation so we can track publications.
97+
A list of (known) publications that use sdmTMB can be found [here](https://github.com/pbs-assess/sdmTMB/tree/main/scratch/citations). Please use the above citation so we can track publications.
9898

9999
## Related software
100100

README.md

Lines changed: 14 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -13,9 +13,9 @@
1313
[![downloads](https://cranlogs.r-pkg.org/badges/sdmTMB)](https://cranlogs.r-pkg.org/)
1414
<!-- badges: end -->
1515

16-
sdmTMB is an R package for fitting spatial and spatiotemporal generalized linear mixed effect models (GLMMs) using ([TMB](https://github.com/kaskr/adcomp)), [fmesher](https://github.com/inlabru-org/fmesher), and the [SPDE](https://doi.org/10.1111/j.1467-9868.2011.00777.x) (Stochastic Partial Differential Equation) approach to approximating Gaussian random fields with Gaussian Markov random fields. One common application is spatially explicit species distribution modeling (SDM). See the [documentation site](https://pbs-assess.github.io/sdmTMB/) and a preprint:
16+
sdmTMB is an R package that fits spatial and spatiotemporal GLMMs (Generalized Linear Mixed Effects Models) using Template Model Builder ([TMB](https://github.com/kaskr/adcomp)), [R-INLA](https://www.r-inla.org/), and Gaussian Markov random fields. One common application is for species distribution models (SDMs). See the [documentation site](https://pbs-assess.github.io/sdmTMB/) and a preprint:
1717

18-
Anderson, S.C., E.J. Ward, P.A. English, L.A.K. Barnett, J.T. Thorson. 2024. sdmTMB: an R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. In press at Journal of Statistical Software. bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485545
18+
Anderson, S.C., E.J. Ward, P.A. English, L.A.K. Barnett, J.T. Thorson. 2024. sdmTMB: an R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. bioRxiv 2022.03.24.485545; doi: https://doi.org/10.1101/2022.03.24.485545
1919

2020
## Table of contents
2121

@@ -59,17 +59,19 @@ installed, the development version is recommended and can be installed:
5959

6060
``` r
6161
# install.packages("pak")
62-
pak::pak("pbs-assess/sdmTMB", dependencies = TRUE)
62+
pak::pkg_install("pbs-assess/sdmTMB", dependencies = TRUE)
6363
```
6464

6565
There are some extra utilities in the
6666
[sdmTMBextra](https://github.com/pbs-assess/sdmTMBextra) package.
6767

68-
**Importantly**, it is recommended to use an optimized BLAS library,
69-
which will result in major speed improvements for TMB (and other) models
70-
in R (e.g., often 8-fold speed increases for sdmTMB models). Suggested
71-
installation instructions for [Mac
72-
users](https://www.mail-archive.com/r-sig-mac@r-project.org/msg06199.html),
68+
**Importantly**, for large models, it is recommended to use an optimized
69+
BLAS library, which will result in major speed improvements for TMB (and
70+
other) models in R (e.g., often 8-fold speed increases for sdmTMB
71+
models). Suggested installation instructions for [Mac
72+
users](https://www.mail-archive.com/r-sig-mac@r-project.org/msg06199.html)
73+
(pre R 4.5.0) or [with OpenBLAS on a
74+
Mac](https://gist.github.com/seananderson/3c6cbf640ba566ce936c79442b9a6068),
7375
[Linux users](https://prdm0.github.io/ropenblas/), [Windows
7476
users](https://github.com/david-cortes/R-openblas-in-windows), and
7577
[Windows users without admin
@@ -84,7 +86,7 @@ system.time(X %*% Y)
8486
```
8587

8688
The result (‘elapsed’) should take a fraction of a second (e.g., 0.03
87-
s), not multiple seconds.
89+
s), not \> 1 second.
8890

8991
## Overview
9092

@@ -164,7 +166,7 @@ random fields. In press at Journal of Statistical Software. bioRxiv
164166
preprint: <https://doi.org/10.1101/2022.03.24.485545>.
165167

166168
A list of (known) publications that use sdmTMB can be found
167-
[here](https://github.com/pbs-assess/sdmTMB/wiki/Publications-using-sdmTMB).
169+
[here](https://github.com/pbs-assess/sdmTMB/tree/main/scratch/citations).
168170
Please use the above citation so we can track publications.
169171

170172
## Related software
@@ -269,7 +271,7 @@ fit
269271
#> Conditional model:
270272
#> coef.est coef.se
271273
#> (Intercept) 2.37 0.21
272-
#> sdepth -0.62 2.53
274+
#> sdepth 0.62 2.53
273275
#>
274276
#> Smooth terms:
275277
#> Std. Dev.
@@ -301,7 +303,7 @@ tidy(fit, conf.int = TRUE)
301303
#> term estimate std.error conf.low conf.high
302304
#> <chr> <dbl> <dbl> <dbl> <dbl>
303305
#> 1 (Intercept) 2.37 0.215 1.95 2.79
304-
#> 2 sdepth -0.62 2.53 -5.58 4.34
306+
#> 2 sdepth 0.62 2.53 -4.34 5.58
305307
tidy(fit, effects = "ran_pars", conf.int = TRUE)
306308
#> # A tibble: 4 × 5
307309
#> term estimate std.error conf.low conf.high

0 commit comments

Comments
 (0)