From a49a1b61a7196cf8d4689e8d0174970645f66fa8 Mon Sep 17 00:00:00 2001 From: Eric Schles Date: Wed, 4 Jan 2017 15:53:48 -0500 Subject: [PATCH 1/2] updating --- ...on to Probabilistic Graphical Models.ipynb | 893 +++++++++--------- notebooks/2. Bayesian Networks.ipynb | 33 +- 2 files changed, 483 insertions(+), 443 deletions(-) diff --git a/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb b/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb index 8de408d..3f62767 100644 --- a/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb +++ b/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -55,154 +55,142 @@ " \n", " \n", " \n", - " 47\n", + " 0\n", " 5\n", - " 3\n", + " 4\n", " 0\n", " \n", " \n", - " 92\n", - " 6\n", + " 118\n", + " 8\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", - " 5\n", - " 5\n", - " 4\n", - " 0\n", + " 82\n", + " 6\n", + " 3\n", + " 1\n", " \n", " \n", - " 106\n", - " 5\n", - " 2\n", + " 87\n", + " 6\n", " 2\n", + " 1\n", " \n", " \n", - " 40\n", - " 5\n", - " 4\n", - " 0\n", + " 78\n", + " 6\n", + " 3\n", + " 1\n", " \n", " \n", - " 6\n", - " 5\n", + " 116\n", + " 6\n", " 3\n", - " 0\n", + " 2\n", " \n", " \n", - " 10\n", + " 16\n", " 5\n", " 4\n", " 0\n", " \n", " \n", - " 35\n", - " 5\n", - " 3\n", - " 0\n", - " \n", - " \n", - " 22\n", + " 10\n", " 5\n", " 4\n", " 0\n", " \n", " \n", - " 123\n", - " 6\n", - " 3\n", - " 2\n", - " \n", - " \n", - " 139\n", + " 112\n", " 7\n", " 3\n", " 2\n", " \n", " \n", - " 117\n", - " 8\n", - " 4\n", - " 2\n", - " \n", - " \n", " 23\n", " 5\n", " 3\n", " 0\n", " \n", " \n", - " 134\n", - " 6\n", - " 3\n", - " 2\n", - " \n", - " \n", - " 39\n", + " 19\n", " 5\n", - " 3\n", + " 4\n", " 0\n", " \n", " \n", - " 37\n", - " 5\n", + " 96\n", + " 6\n", " 3\n", - " 0\n", - " \n", - " \n", - " 32\n", - " 5\n", - " 4\n", - " 0\n", + " 1\n", " \n", " \n", - " 55\n", + " 64\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 57\n", - " 5\n", + " 68\n", + " 6\n", " 2\n", " 1\n", " \n", " \n", - " 15\n", + " 133\n", " 6\n", + " 3\n", + " 2\n", + " \n", + " \n", + " 76\n", + " 7\n", + " 3\n", + " 1\n", + " \n", + " \n", + " 48\n", + " 5\n", " 4\n", " 0\n", " \n", " \n", - " 146\n", - " 6\n", - " 2\n", + " 139\n", + " 7\n", + " 3\n", " 2\n", " \n", " \n", - " 114\n", + " 128\n", " 6\n", " 3\n", " 2\n", " \n", " \n", - " 102\n", - " 7\n", + " 105\n", + " 8\n", " 3\n", " 2\n", " \n", " \n", - " 78\n", + " 55\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 82\n", + " 4\n", + " 5\n", + " 4\n", + " 0\n", + " \n", + " \n", + " 121\n", " 6\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", " 79\n", @@ -211,55 +199,73 @@ " 1\n", " \n", " \n", - " 71\n", + " 132\n", " 6\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", - " 77\n", + " 108\n", " 7\n", + " 2\n", + " 2\n", + " \n", + " \n", + " 88\n", + " 6\n", " 3\n", " 1\n", " \n", " \n", - " 20\n", + " 93\n", " 5\n", - " 3\n", - " 0\n", + " 2\n", + " 1\n", " \n", " \n", - " 16\n", + " 43\n", " 5\n", " 4\n", " 0\n", " \n", " \n", + " 74\n", + " 6\n", + " 3\n", + " 1\n", + " \n", + " \n", " ...\n", " ...\n", " ...\n", " ...\n", " \n", " \n", - " 133\n", - " 6\n", + " 143\n", + " 7\n", " 3\n", " 2\n", " \n", " \n", - " 132\n", + " 124\n", + " 7\n", + " 3\n", + " 2\n", + " \n", + " \n", + " 127\n", " 6\n", " 3\n", " 2\n", " \n", " \n", - " 38\n", - " 4\n", + " 67\n", + " 6\n", " 3\n", - " 0\n", + " 1\n", " \n", " \n", - " 144\n", + " 141\n", " 7\n", " 3\n", " 2\n", @@ -271,153 +277,147 @@ " 1\n", " \n", " \n", - " 138\n", + " 111\n", " 6\n", " 3\n", " 2\n", " \n", " \n", - " 103\n", + " 15\n", " 6\n", - " 3\n", - " 2\n", + " 4\n", + " 0\n", " \n", " \n", - " 30\n", + " 24\n", " 5\n", " 3\n", " 0\n", " \n", " \n", - " 2\n", - " 5\n", + " 13\n", + " 4\n", " 3\n", " 0\n", " \n", " \n", - " 148\n", + " 97\n", " 6\n", " 3\n", - " 2\n", + " 1\n", " \n", " \n", - " 45\n", - " 5\n", + " 42\n", + " 4\n", " 3\n", " 0\n", " \n", " \n", - " 51\n", + " 56\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 56\n", + " 61\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 109\n", - " 7\n", + " 5\n", + " 5\n", " 4\n", - " 2\n", + " 0\n", " \n", " \n", - " 110\n", - " 6\n", + " 122\n", + " 8\n", " 3\n", " 2\n", " \n", " \n", - " 12\n", - " 5\n", - " 3\n", - " 0\n", - " \n", - " \n", - " 141\n", + " 145\n", " 7\n", " 3\n", " 2\n", " \n", " \n", - " 143\n", - " 7\n", + " 34\n", + " 5\n", " 3\n", - " 2\n", + " 0\n", " \n", " \n", - " 93\n", - " 5\n", + " 115\n", + " 6\n", + " 3\n", " 2\n", - " 1\n", " \n", " \n", - " 65\n", - " 7\n", + " 83\n", + " 6\n", " 3\n", " 1\n", " \n", " \n", - " 24\n", + " 9\n", " 5\n", " 3\n", " 0\n", " \n", " \n", - " 69\n", - " 6\n", - " 2\n", - " 1\n", - " \n", - " \n", " 25\n", " 5\n", " 3\n", " 0\n", " \n", " \n", - " 140\n", - " 7\n", + " 37\n", + " 5\n", " 3\n", - " 2\n", + " 0\n", " \n", " \n", - " 28\n", + " 22\n", " 5\n", - " 3\n", + " 4\n", " 0\n", " \n", " \n", - " 135\n", - " 8\n", + " 50\n", + " 7\n", " 3\n", - " 2\n", + " 1\n", " \n", " \n", - " 131\n", - " 8\n", - " 4\n", + " 137\n", + " 6\n", + " 3\n", " 2\n", " \n", " \n", - " 42\n", - " 4\n", + " 138\n", + " 6\n", " 3\n", - " 0\n", + " 2\n", " \n", " \n", - " 31\n", + " 35\n", " 5\n", " 3\n", " 0\n", " \n", " \n", - " 43\n", + " 85\n", + " 6\n", + " 3\n", + " 1\n", + " \n", + " \n", + " 47\n", " 5\n", - " 4\n", + " 3\n", " 0\n", " \n", " \n", @@ -427,72 +427,72 @@ ], "text/plain": [ " length width type\n", - "47 5 3 0\n", - "92 6 3 1\n", - "5 5 4 0\n", - "106 5 2 2\n", - "40 5 4 0\n", - "6 5 3 0\n", + "0 5 4 0\n", + "118 8 3 2\n", + "82 6 3 1\n", + "87 6 2 1\n", + "78 6 3 1\n", + "116 6 3 2\n", + "16 5 4 0\n", "10 5 4 0\n", - "35 5 3 0\n", - "22 5 4 0\n", - "123 6 3 2\n", - "139 7 3 2\n", - "117 8 4 2\n", + "112 7 3 2\n", "23 5 3 0\n", - "134 6 3 2\n", - "39 5 3 0\n", - "37 5 3 0\n", - "32 5 4 0\n", - "55 6 3 1\n", - "57 5 2 1\n", - "15 6 4 0\n", - "146 6 2 2\n", - "114 6 3 2\n", - "102 7 3 2\n", - "78 6 3 1\n", - "82 6 3 1\n", - "79 6 3 1\n", - "71 6 3 1\n", - "77 7 3 1\n", - "20 5 3 0\n", - "16 5 4 0\n", - ".. ... ... ...\n", + "19 5 4 0\n", + "96 6 3 1\n", + "64 6 3 1\n", + "68 6 2 1\n", "133 6 3 2\n", + "76 7 3 1\n", + "48 5 4 0\n", + "139 7 3 2\n", + "128 6 3 2\n", + "105 8 3 2\n", + "55 6 3 1\n", + "4 5 4 0\n", + "121 6 3 2\n", + "79 6 3 1\n", "132 6 3 2\n", - "38 4 3 0\n", - "144 7 3 2\n", - "98 5 2 1\n", - "138 6 3 2\n", - "103 6 3 2\n", - "30 5 3 0\n", - "2 5 3 0\n", - "148 6 3 2\n", - "45 5 3 0\n", - "51 6 3 1\n", - "56 6 3 1\n", - "109 7 4 2\n", - "110 6 3 2\n", - "12 5 3 0\n", - "141 7 3 2\n", - "143 7 3 2\n", + "108 7 2 2\n", + "88 6 3 1\n", "93 5 2 1\n", - "65 7 3 1\n", + "43 5 4 0\n", + "74 6 3 1\n", + ".. ... ... ...\n", + "143 7 3 2\n", + "124 7 3 2\n", + "127 6 3 2\n", + "67 6 3 1\n", + "141 7 3 2\n", + "98 5 2 1\n", + "111 6 3 2\n", + "15 6 4 0\n", "24 5 3 0\n", - "69 6 2 1\n", - "25 5 3 0\n", - "140 7 3 2\n", - "28 5 3 0\n", - "135 8 3 2\n", - "131 8 4 2\n", + "13 4 3 0\n", + "97 6 3 1\n", "42 4 3 0\n", - "31 5 3 0\n", - "43 5 4 0\n", + "56 6 3 1\n", + "61 6 3 1\n", + "5 5 4 0\n", + "122 8 3 2\n", + "145 7 3 2\n", + "34 5 3 0\n", + "115 6 3 2\n", + "83 6 3 1\n", + "9 5 3 0\n", + "25 5 3 0\n", + "37 5 3 0\n", + "22 5 4 0\n", + "50 7 3 1\n", + "137 6 3 2\n", + "138 6 3 2\n", + "35 5 3 0\n", + "85 6 3 1\n", + "47 5 3 0\n", "\n", "[150 rows x 3 columns]" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -520,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -528,18 +528,18 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 13, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmMnOd94Pnv8x51X93V991NdvMSRVIHRUk+aDmRR5Et\ne+LsThJMMsEOdrKzu0CwGwQLBDOI80f2zw0wSLCTYBe7k8Ukk5mBk1i240u2JOsiKd5Xk+z7rq7u\nuq/3fPaPpinRbIlNmt1NNp8PIKBY9VbV71FX/d6nnuP3CikliqIoyqNP2+4AFEVRlAdDJXRFUZQd\nQiV0RVGUHUIldEVRlB1CJXRFUZQdQiV0RVGUHWLDCV0IoQkhzgghvrXOY58XQhRuPn5GCPFvHmyY\niqIoyt0Y93Ds7wFXgMQnPP62lPK1XzwkRVEU5X5sqIcuhOgBfgX4vz7tsAcSkaIoinJfNjrk8qfA\nHwCftq30eSHEOSHEd4QQ+3/x0BRFUZR7cdeELoR4FchIKc+x1gtfryd+GuiTUh4G/gz4+wcapaIo\ninJX4m61XIQQ/zvwzwEXCANx4JtSyt/+lOdMAk9LKXM/d78qHKMoinIfpJR3Hda+aw9dSvmHUso+\nKeUQ8OvAj38+mQsh2j92+yhrJ4oc65BS7tj//uiP/mjbY1DtU+173Nr2OLRvo+5llctthBC/u5af\n5V8CvyaE+NeAA9SBf3a/r6soiqLcn3tK6FLKt4C3bt7+i4/d/+fAnz/Y0BRFUZR7oXaKPkDHjx/f\n7hA2lWrfo2sntw12fvs26q6Tog/0zYSQW/l+iqIoO4EQAvkgJkUVRVGUR4NK6IqiKDuESuiKoig7\nhEroiqIoO4RK6IqiKDuESuiKoig7hEroyi9MLUVVlIfDfW/9Vx5v+Xyea9emGB3NUK87GIZGe3uc\nw4cH6O7uRtf17Q5RUR47amORck9s2+attz7kxo0GgcAAzc3dGEYA3/epVHKUSlNEo6t86UuH6ejo\n2O5wFWVH2OjGIpXQlQ2zbZvvfvddlpc76ejYgxDrf74qlQLF4ilee+0AXV1dWxylouw8KqErv7BC\noUCj0QAgHA5z/vx1rl6N0tV19wtS1WolyuX3+c3f/CyRSGSzQ1WUHW2jCV2NoSu3cV2X2ZkZps6e\nheVlYpqGlJJso8GPrjbY9/S/wPO8u46RRyIJCoVexsamePJJdUVCZXPYts3szAzFTAbPtjHDYVp7\ne+ns7ETTHr81H6qHrtxSr9c58YMfEJ2bYyiVIp1I3HrswtQsPzgbRgTbsFta2f3kk1SrVRzHwXEc\nbNsmFotiGCbRaJRQKESjUaVWe4d//s9/6aGdJC2Xy8xNT1MvFgEIJ5P09PcTj8e3OTLl0ziOw+Uz\nZ1i6eJF2x6E1FELXNGzXZcGyKCcSDD7zDLv3fPLQ4KNEDbko98S2bd759rfpz+XY1d5+x+P/8ME1\natZhTCPM2alJRr0asa5misU6+RUf6SQIiDAtqSYSCUFfX4L+/naq1Qv8+q8fIpVKbUOrPlkul2P0\n1Cmqk5P0ArFgEICyZTErJbFdu9j37LM0NTVtb6DKHRqNBu9/73u0Li4y0t5OwDTvOKZSr3NheZng\nU0/x1PPPP/JJXQ25KPfk+uXLtC4tsau3d93HLcfHclw+nBulHrSRpRITYyGSTSO0dycRmo7ruBQr\nNexiCGMhwfz8DOl0Fsdxtrg1n25paYnz3/oWTwQC6/403+P7LMzPc3JmhsNf+Qrt65zglO3h+z4n\n33iD7myWkZ6eTzwuFg5zrLeXk2fPciUS4cDhw1sY5fZ5/AaZlDu4rsvcuXPsbmv7xGN86XFy5jp+\nQqLpGqVcEzhpIvEUQlsbTjFMg0RTAifgkMkVSCT2cuNGiRs3JraqKXdVKBQ4//rrHEsk6E6n1x1n\n1TSNnpYWnotGOff66xRvDsco229paQl9epqRDSyJ1TSNp7u6mD11CsuytiC67acSusLCwgLpep3w\nzWGH9dTdFUr6KuFwgOk5h2R8gCDQqDfuODYSi1KjxnJ2kZaWVs6eXaVarW5iCzbu+rlz7NU0ktHo\nXY9NxWLsAa6fP7/5gSkbMnXxIoP3sGrKNAw6XZeZqanNC+ohohK6QqVYpOljk5Z1y+LG3Bznr1/n\n3LVrXJiYIOutEg2vUChVcNxmDN0kgMBx3XVfM5qIMD1/lqGhXgxjkPHx6a1qzieq1Wrkr12jJ53e\n8HN6WlpYvXr11vJNZftYlkVpcpKOe5zX6EulmL98eZOierioMXQF33XRNI1yrcbo+Di5+Xm6pSSl\n6wghmFxZoViZQw9FuTYVIRF/CQABSOmv+5rSd/C0CcLhI6TTbZw9+1MOHty3rZNTCwsLdPn+Pa24\nMXSdTt9nYWGBoaGhTYxOuRvLsggJcc/LESPBIFa5vElRPVxUQlcIRCIsFYvcuHyZEdflqVQK/WNf\nGqde4zOhGLYUTGbeoEQvLc0H8ZDo2p3J0XVqVCun6RlpRtcDBIMRVlbWlpoFAoGtbNptrGqVyH0s\nn4xoGla9vgkRKfdCCMH9rJGTUqIZj0eqU0MuCvFEgvcvXuQwMNjUdFsyB/CR6EKjIxXlpfYEyeL3\nyebeodBYJRj6aNzdsSuUCqNYjfcZPtBCsqkD3/9ZD1587Pb2EL/ARpNHfdnbThAKhWho2icO832S\nYrVKpLl5k6J6uDwepy3lUy3PzbE/meRnq3mllNRtG8/30YTA1HQ820cIQVM0wGcDbbwrZjDTJo1K\niQYmCJ9gCAaGW0m1PIFhBlmZX8E0TTzPRdNczHXWC2+lSDxO7h6TAUDR82iLxTYhIuVemKZJ+4ED\nzF65wtA9LCWdqlTo+8IXNjGyh4dK6I8pKSWu6+L7PosXLvDU4cOMv/8+hWqF2fIqNWkhNLAdh0ap\nwWq1hOuniUU9aqsOhtNg5PAhEokUvuciNB1N02/1ZD3PQ7d1mpubWV2dZ+/e1m3fLdrd3c1oIIDt\nOOtuRllPw7ZZCYU41Nm5ydEpGzGwdy/nzp2jfwPlJwBKtRqFaJRnHpMicSqhP0aklKysrDB19SrL\no6Novs9SLkdgcpLi3r1MaxZns5MMtCSJGCaVXA5h10iYPhmrxOXxFVoCUeaWy3R3HqJSzaOl0mjr\njKOX8iX62vswDAPLmmLfvu2v52KaJh0HD3Ll5EkipknVWVu5kgxF6U6nCa6T5CezWbqefXbbf10o\na5qbm2l+5hk+PHmSZ3p6PjWp1yyLkysrHHjttW3vTGwVldAfE41Gg5NvvIGcnmYwFOJIWxuGrnND\nCDKXL3P9+69jpQK07R1mZmEWd3KeNt0gbJqg6XSnE1wq5pjVLPp6UsyvLrJ0Y5Sm9n5M4/ZkV6/W\n0SoaA3v6WVy8yu7dBi0tLVve5tXVVeYmJm6tcHB0ncV8lp9OnaUj4tKSWqtV45Z9jCmNA+k+DvUO\nEg2FAJhbWWEuleKzBw5seezKJ3vymWc453m8d+YMI/E4banUzXr8lbVfnVKyWq0yaxgMv/IKPZ+w\n+3knUrVcHgOWZfHO66/Tl8sxfHPoQEpJplDgp2fPkv3xD+mOmwjTZN53scIaYaLk8uB7BgKJ0F1S\nCZeaKCFMgXDivOENkTjwBQb3HkATGr70KefLyJLk6X1HqNcX6enJ86UvPb+lq1symQxn3niD6sQE\nXUIQD4WoeR4/mrlErskn1teJXa/R4/u0J5MEDRPX9cjmSoQKJl/cdYh8vc5SUxPPvfqqKtT1EJJS\nMj8/z+jJkyx8+CH6/DxR28YXgowQ+B0d7Hr+eZ584QU6Ozsf+UntB16cSwihAR8Cc1LK19Z5/N8B\nrwBV4HeklOfWOUYl9G1w4ic/IXXjBntuJvNcucyZ8+cJlUr4hQIzV8/x2fZmGq7DmWvzTNhRgr0j\ntHbturUsUSKp16tUa/PUnClc0ySzq5vZfBCz4xlisV60hk5rsoWOlijJZJlDhzo5fHj/lg5XfHjq\nFO/8h/9Me0UjFekGdMpWmXey79G+L8pAXxuuJhiv1wn39GKvrhC1LMJCQyJZLlWp54P8+j/7lxw4\ndIjQzd668vDJZrOc+fa3aSoUSIZCBAwD0zBoSSQIGAZL+Txj1SrRI0c4cuzYI11OdzOKc/0ecAVI\n/PwDQohXgF1SymEhxHPAvweO3cNrK5ukUqlQHB3l2ZuTQiulEqc/+IAjpklbSwtj5SKjkRANz2Nx\nuUacDp4IBpjPZch4FsnWfsKhGJqmEQnHCIdHWM1HOV8d51898Tmy1TJnrDxD+0ZIpZpJJhN0dzfR\n1/fslq85f+utd/nB//lfOJbeR2t3x60v8PjceRIDA0hf59r1Vbq7Q+xrSnA9s8TwCy9g2zaOvVZA\nbFcwQDVXhYDxyCVzKSWFQgHbttE0jWg0umMvLpLL5TjzD//As5EIzbt3r3tMVzpNR1MTp8+e5ZwQ\nHDl27JHvqd/NhhK6EKIH+BXgT4D/dZ1Dvgr8FYCU8oQQIimEaJdSZh5YpMp9mR4bo0/T0DQNy3E4\nfeoUzwQCpG9+0WuNKunWFD8ZnUauAl6RoC+JCp20VaRYXqUYS2OFkxjhBKYRoEyAJW2QeDjG83v3\nE52b49mvvUwicce5fsuMjt7gu3/7Hi+0PEF700dL2up2gzlrgXRPM5oQBIMR5ubm6NcqdAcNlmZm\nGd5/+4RtLBLj/LXzPPnEk4/EZKht20xOTXL26lnydh7NXDuRSUsy3DnMgZEDtLe376hkduHttzkU\nCNB8l+EwTdN4qrubd86eZXloaMdXztxoD/1PgT8Akp/weDcw+7F/z9+8TyX0bbY6NcXBm4l2JpOh\nw7ZJ36xlYnsel7IrFKwyl5eLvGhrHNADGJpg0bVYabhIq0ZECox6nkXdoJJIc0kzKendfPODK+zu\n7CAqBI1GY9sSeqPR4Ac/uECzE6S9vfW2x5bKWWQStJvJTNM0EoluZuemOPBEN3MzM9jDuwmYH/2a\nCAQDWAGLpaUleh/yCbVSqcR3fvwdCnqBpu4meuIflZT1fZ/Z7CyjPx3lyZ4neeHoCztitcfq6ios\nLNCxwb+NrusMhUJMXb684xP6XQeVhBCvApmbY+Li5n/KI8K1bUxdR0rJ9MQEgzc3yFiuyzvXr5Mu\nV+gpVng5mKIaCDHru5Qdj7Br0tYIEKv5rORLYHsEamXOZOZZDPdQsiN8+1KJf/uf/yvzKyts59zI\n1NQMuRWdfiOAJm7/SNfcOoZ5exLTNB1BklKhTBOSfC5/x2uKgHjoC3JVq1W+9ca3sJotekZ6iMZv\nryCpaRrp9jQ9T/RwYfkC7518b1v/Tg/K9LVr9N/jcF5XczOFGzeo7/ASDhvpob8IvCaE+BUgDMSF\nEH8lpfztjx0zD3z8dNlz8747fOMb37h1+/jx4xw/fvweQ1buhREI4NTrVOp1tGqVRDqNlJKTU1P0\n1OvIaJzp5WXaAm2Ydp0JP8pVJDHfI24YaCJI1bZ5rwB6sI9W06aYr5OIPkncHGayOsbFH85Q6X2f\nX/3VL27LipBz52aIhVKEjJUNPyccSbKUmSbdlXroLsCxUR+c/oBGonHXXqemafSM9HDh8gWGFobo\n7u7eogg3R2V5maENlD/+OF3XibN2EgyHw5sT2AP05ptv8uabb97z8+6a0KWUfwj8IYAQ4vPA7/9c\nMgf4FvA/AX8rhDgGFD5p/PzjCV3ZfOmBATInTtAWj/OzPk22VoNCgZFEgjOrqzSjk21YeKKd3YEA\njuexoDWohAxc6WM4PkkjSSBxBM2rYy6eJ7Lns2iaTyKZwmkaYG6+k7/7u/f52teObenQy9pEYINQ\nuAvW6X1GjTCu7eF5HrVaDcuxkFJi6MZaRUjpY66z+kFa8qH+4lerVa4vXKfr0MZ2QGqaRrwjzvnR\n8498Qpe+f18rVjTY9npCG/Xznd0//uM/3tDz7nsdjxDid4UQ/wpASvldYFIIMQb8BfA/3u/rKg9W\n/+7dzNysyeLdHEeeymYZMAzKto3pOIR0k3IjSsRMghB40qclFKXTiNAig6T1BIN6kKqzihBx+rwu\nyoUxJDZl16NzuJ9ctY7r7uMHPzi15V8aKSEQSVDw7qzTkg43UZjJMzE7Qaa8RMkpUfbKrDZWWcgu\ncGl6klq9dttzrIZFyAnRsYGr4myX8clxRPLeSsmmWlJMr0xTKpU2MbLNF4hGqd/HFYjqvr+t1T63\nwj0ldCnlWz9bgy6l/Asp5V9+7LH/WUq5W0p5SEp55kEHqtyfWCxGcu9e5vJ56rpO1bZZWV2lKxTC\ncl3CgGPECOphfNfDFwKLtcvM+dLHcQEjRLMRxq8uggWtkV1Y5VXK9TECHb2kW9PU/BqmGWd5OcLS\n0tKWtU8IQTRqEk+0sKSbON5HwyeWbTE9O0XYC2JrLuFYhGA4SDAUJBQKYsQN8gnB1fmrzM3P3Xre\nysIKh0cOYzzEJVeXc8tEEve2JFEIgRbWqFQqmxTV1ugcGWHuHq+AVahU8JubSSY/aV3HzvDorrRX\nNuzwCy+QaWvDTSQYz+cxAV3TkKxNjrpESUbCIAV120MGAzi+h+141CX4wkQ0fHRXEg82ITSTasNE\nJj36RkbQ0BCmwLZtotEBLlyY3NL2HTzYTam0RKT/CeYLWWDtOqnj0+O4IZcDPcPoOY36xy6XZzUq\nuEGP5pF+0v1pzk+cJ5vNsppZJWkl2bdn35a24V55vndfww5SyEdm2OGT9PT2kg0Gadj2hp8zVSzS\nf+TIjlq6uR6V0B8DwWCQF7/8ZczDh/lxoUC2UsGTEkPTKHsenm9iGGBrDuFEikgwgqGHaFg+dRlA\n80IERBiETtUuk2usYAUMuvt3YWi392JTqXampvJbmjSGhwfw/Rna+55gIpogU16lUCxQkzUi0Qjh\nQIinmp/AW/QoFsp4rkehlsHqbiHVnsYwDELNId59510CuQCvvvTqQ7+pKBqK3toMdU9cHom19Z/G\nMAwGjh7lzOLihj5ni7kc2WSSvoGBzQ9um6mE/pgIhUJ86dd+jRd+//e5HA5zJpcja9tMuy4lCeHW\nFjq6m9A1G13XCARNrFCUaHoQLWiQ88pYMo7lhZl1HYzoLuYmFlmcHcexG0hHEggEbvYaDdz7qDt+\nv2KxGEeOtLKyMsrA069yyQxxcuIiMvhRbywejvJs65Ok8ymunr3OvHCJtbVTXCyyMraCP+fTYrTw\n/KHnt3WD1EYN9g5Sz93bEjyrYRF0g7f2ITzK9hw4QOjpp3l/dpbaJ4yn+77PZCbDRU3j6K/8yo4f\nPwdVbfGxc/S55yj83u8x+R//I88lEgzF4yxfzhIOh5FybQhmOpPFCkbxzBhOrYjvR8gSwgwN4RsW\nTtMwqfQhwtEOFqciLE6fY6Bj6GOJ0Nvy8eejRw/RaJzi8uWrNO9+njfzeebdLM2FZSI3f2YXHZt5\nXWP45ec58OzN7eJi7WTX3NZMbjnHfGaewcHBLY39fnR2dhKXcerVOuHoxlbjrC6ucnTk6EM9N7BR\n4uZW/hupFD89eZKmbJbucJiQad6qtjjj+8SHh3nh2DFij8kFSh79v6xyzz5z/Dg/HBvDchwcIbju\nT6EVVokEwuipJKlICEtY1KaLeF4LruGwbAhampuZ8MvQ+iJ4E8ST/QTDzWTnoWLkse06tl2nszO2\n5YWQNE3jc597lra2G7zxxgdgVAj2PUHOqpGxGnhujki8xIvP7KZ/pHvd+ILhIOXao3ExYU3TeO7g\nc3z/3PfpPdB71x2g5UKZQCXAyO6RLYpw8wkhGNm3j10jIywsLLAwPo5draKbJvG2Nl7YvfuxSeQ/\noxL6YygSibD/5ZdZ+NGPOPrSSxjpdi7+dIyRcIyWeDNJ2+HaxA0i0TQVPcCE5hOI7mVSVlhp+Sya\nHsYMOgTDzdQqVZoi/YTDg0xOXiMe9/nMZwa2pV2aprF//x6SyRjV6P9HIDGPY/kYAY2mlhaa20fu\nmvgepUmzkeERiqUiJ66coGO447bru35cPpvHXrD56he+SvQeN+Q8CnRdp7e396Ev07AVVEJ/TA3v\n3Yvv+7z71lt0t6dpGW6wVDRYrqzS7Ps0HMG8XeayvcJ89AmccCdu8jBmME29doKO9h7KhTIhL8Tu\nwV3ousb16//A888H6e4+vK1ti8ViJGNJup/ovqcEXa/WaUo2bWJkD96zTz9LPBbn/QvvkzWzRFui\nmEET6UtqlRr2qk1XvIvP/dLnaH5MLpT8OFMJ/TG2Z/9+Wtrbmbx6lUatxsz5OczmLi6UClwIuYju\ng5S8FJmVOMHgCJrjUK28TVM6jm4laW9qp7W1FcMwqdfL1GoOBw/2bfsYbTKZpCvRRSlfItm88XXH\n9qrN8JHhTYxsc+zds5fh3cPMz89zbfIa1dUquq4zmBxkz5E9KpE/RtQVixRgrWLh5OQk779/mcuX\nV1hY2ENX10FAkMstMTr6Ab606Ol+ku7ug8TjMTRNp14vU60uEwwW6evTOX5c46mnDm53c5ienub1\n06/Tf6B/Q8fnV/IkSgm+9srXNjkyRbl3D/yKRQ+CSuiPhg8+OME3v7lEONwKSMLhIK2t7XieweRk\nlkLBQQgDKV2SSYOhoXZaW1tYXZ3j8OESzzzz5HY3Ad/3+cFPfsC0PU3X0KfXO6lVahTHi/zqS7+6\nLdc+VZS72YwrFimPic7ODgYGTHp7n1rnsU4cx8HzPHRdv22TiuvWiMUejg05mqbx0mdf4kdv/4jJ\nq5Oke9J3lJd1HZfVzCpyRfKVz31FJXPlkacSunKHjo4OTPMqrutgGHfuKjRN847dhr7vI+UcPT0v\nbFWYdxUIBPjSF77E2PgYZ6+eZc6dQ4TFWkV/B/S6zoHBAxx45sCOr/GhPB7UkIuyrvfeO8Ply0k6\nOnZt6PiVlTn6+ub44hcfzkvJSinJZrNUKhX8m1X32tvbCQbXX+qnKA8TNeSi/EIOHhzm2rX3KJeb\niMc/fZVErVbCcS5z5MizWxTdvRNC0NbWRltb23aHoiibRvXQlU+UzWZ5/fUzwD7S6Z47dlf6vk8+\nv4htX+bVV5+gu3tjF1tQFOXeqFUuygNRLBb58MOrXL9eRNN6Mc21S8zZdhWYZWAgytGje9VaZ0XZ\nRCqhKw9UtVplenqWUqmB70sSiRD9/T3bcg1RRXncqISuKIqyQ2w0oat66IqiKDuESuiKoig7hEro\niqIoO4RK6IqiKDuESuiKoig7hEroiqIoO4RK6IqiKDuESuiKoig7hEroiqIoO4RK6IqiKDuESuiK\noig7xF0TuhAiKIQ4IYQ4K4S4KIT4o3WO+bwQoiCEOHPzv3+zOeEqiqIon+SuF7iQUlpCiC9IKWtC\nCB14Vwjxj1LKkz936NtSytc2J0xFURTlbjY05CKlrN28GWTtJLBeycS7VgJTFEVRNs+GEroQQhNC\nnAWWgB9KKU+tc9jzQohzQojvCCH2P9AoFUVRlLva0DVFpZQ+cEQIkQD+XgixX0p55WOHnAb6bg7L\nvAL8PTCy3mt94xvfuHX7+PHjHD9+/D5DVxRF2ZnefPNN3nzzzXt+3j1f4EII8W+BqpTy//iUYyaB\np6WUuZ+7X13gQlEU5R49sAtcCCFahBDJm7fDwC8Doz93TPvHbh9l7URxWzJXFEVRNtdGhlw6gf8g\nhNBYOwH8rZTyu0KI3wWklPIvgV8TQvxrwAHqwD/btIgVRVGUdalriiqKojzk1DVFFUVRHjMqoSuK\nouwQKqEriqLsEBtah64oO5HjODiOg67rBAIBhFCbnZVHm0roymPF8zzm5+c5d26KhYUqYAIeTU0G\nR470MzDQRyAQ2O4wFeW+qFUuymOjUCjwve+dIp9PEY8PkEi03OqVVyoFisUpAoElXnnlEJ2dndsc\nraJ8ZKOrXFRCVx4LxWKRv/u7D9C0QzQ1dXzicdVqkULhJF/96hMqqSsPDbVsUVFuklLyox+dBg5+\najIHiEaTpFJH+cd/PI9lWVsToKI8ICqhKzve8vIymYxJOt21oeOj0SSW1cnU1MwmR6YoD5ZK6MqO\nd/nyFKHQwB33+75Po1GlVivjOLf3xpuaBjh7dho1RKg8StQqF2VDqtUq45PjjE6NUrfqmIZJR3MH\n+4f3097e/lAv+ZudLZBKHb7171qtzOLiNJOTcziOCWhIadHWFmNgYIDm5i6i0STz8z6WZREKhbYv\neEW5ByqhK5/KdV1OnD7BhckLaEmNVGeKeCCO7/lMF6cZfXeUlkALv/TiL9Hc3Lzd4a7Ltl00be2j\nPjNzjcuXpxGij3j88yQSYWBtnL1UynDy5BSp1HWeeuo5wMDzvG2M/MHxPI+FhQUWF3PYtkcgoNPV\nlaarqwtNUz/UdwqV0B9zlUqFer0OQCgUIh6P33rMdV1++OYPmapP0XXozi9+MByEDiisFvjmj77J\nV7/wVVpbW7c0/o0IhUw8z2Fu7gYXLy7T3Px5DCN42zFCCGKxDmKxDorFaU6efI+enhqG8Wh/RXzf\n58qV65w+PU21msI026jVapTLJRqNCRKJIi++uJfnnz+qEvsOoJYtPoZ832dhYYFzV88xuzqLFtRA\ngG/5dCW7OLL/CN3d3Zw4fYLzmfP0jPTc9TXLhTL2rM2vf/nXH7ohivfeO8OpUzA6mqOp6XPo+u0b\nh2y7Qbm0gmfXEUKgByMUi5Mkkz/mN3/zVXxfEosFGRjopqmpaZtacSfLspiemSaby+J6LpFghL6e\nPtra2hBC4Hkeb755ktFRg9bWfeTzZcbHlymXDYRIIoSGbZdZXf0pQ0NZvv714wwODtLU1EQwGLx7\nAMqWUevQlXXZts2Pf/pjJooTxNpjpNIphBC4novruJQKJeqrdToDnSzmFul5ugfd0Df02vNj83x+\n1+fZt3ffJrfi3uRyOf7kT/4Ltv0yqdTgrfvr9QqFpXHc1XlahCCo6biuw1KuwLXVDKGORb76a79B\nU1M7tl3DdWfp7tY5dmwv7e3tn/KOm6vRaHDmwhkuT17GjbqE4iGEEGulDPIOzWYzR588ysJ8jgsX\ndDo7D3L16jjT05J4vIdwOAZAtbrM8vIkq6s58vkc0WiO557rYXAwzIEDbezfP0Qqldq2diofUQl9\nizUaDWoPF8CuAAAgAElEQVS1GlJKQqEQ0Wh0u0O6g+d5fO8n32POmaNzcG3TTKFQYGYmw8JihbVt\n8D4B06dRymLX6nzlv/0Khrn+sIPt2BSLRTzXQ9M1XMulOlblc89+DoBoJEpvTy+xWGyLWrg+y7L4\ngz/4C1z3n5JO9wJQqeTJXz9JN4LwzeEXx3ZYzpbx3ABmoIAbrhDsXuXYl/8H4vFmpJQUi1nK5fO8\n8soIg4P9W96WarXKd378HfJmnraetnX/NpVShbmrc+Suxzj27O9y5co1btxo0NQ0QCAQRteDZDJX\nmJ3NYJrDhEJdCCEolc7S2Sk4cqSJSETiumO8/PIIQ0MDW95O5XYqoW8BKSWZTIapy5cpjo0RBQRQ\nk5JgVxcDhw/T3d2Nrm+sh7vZrly9wk+u/4S+vX3Yjs3589fJLmsEg+1EY01oYm0M1XEtLlw+QT5/\njc8ffoIXX37+ttepVCsszcxQnJkhKSXScZnJrzBVXaVU8vnc575Id283nu0hi5Jd7bt4+smnSafT\n29Fsstks/+k/XWFmJs7Sko3vN8iPnaZDRAi4zQgZw/cl+XwRzzOIREoMDfWjBwXwAYGBfna9+HVC\nobWTtGXVWF5+l69//ckt7am7rsu3vv8t8uE8bd1tn3rs6OgY739vnkHzAEvnJ2iNdKEJDUv6ZNBZ\nqXfS0vIyuv7R0EqlMk9ra41YrMRLLz2J7ztkMu/z2mt76O29+7Cbsnk2mtAf7RmfbeR5HqfffZfG\npUsMhcMc7ei4NakkpSRbLDL57W8z0d3Ncy+/TDgc3tZ4fd/n7LWztPS24LgOH354lXK5lZaWLmzH\nJpfLUSoXcR0P0zRx/SDNfYd4//0pOnu6GNq/1hvNZrPMnTlNl9AYSCaxHIdTM9dx4i77ulpZGsvj\nz0xQSgTZtW8fAsFCdoGJH03w6guv0tvbu+Vtr9frTE9coj42RnxiFLFaoqVmU9ejrATbIPkkut+N\n72tEIhqRSC+ZjEU04dDeGmbQabA0e4WB4WcBCAYjxGJPcuLENV57besS+uzsLIvOIn27+z71OF/6\nnD11mRg+yxe+zfORV0gl1uKsOzXeGBslrbdR8s6TaD+Eppk0GlUa5So3Fj+ko9nkPW+Z4UNPkkod\n4Uc/Oslv/VbHIz9B/DhQf6H74Ps+p95+m+DVqzzT3X3H6gAhBG2pFG2pFGNLS7z/3e/yma98ZVur\n+GUyGYp+kd5YL1eujlEqNhEONzExNc5MZpaSVcLTPDBBepJStoQR0dHrDn/z/77Psy9fIxwLI+eW\neKa9nUgwhO26fDgzhpeUNEfXhlXCZpA9rS1kp2eYEILd+/aTbk9Tj9X5znvf4esvfX1LV8KUSiX+\n9s/+jNRPT/Nq+15SQ/sYK10mmYxiuS7L7irXs9/hkh+kqee3aU0NgtBA+qysThINlujcPcT41AXc\nwcMYhglAKtXG3NwlCoXClo0znxs9R6rj099LSsn1y1cwF+bY33mEc4ESjvbRr+Lpwiw+LaQMMIo3\nWKytohmdRFyHVt2kLjWeCKWQc4s0xAUWdR0vUWdubo6BgYFNbqHyi1IJ/T5MT00hL1/mcF/fXTfU\n7O7owJqf58rZsxx+7rktivBO5XIZERbYjs3MdBFNG+LS+CVy1Ryu6RJpjmCYOhKolqvIsqTgFxGa\nRX1Rx3ljAh+biOVxLbLMZw92YoR1akGLdHRtqaPreOiORiQUYjAa5srUNMXublLJFOFomHBXmBPn\nTvDlX/7yprfXdV3Gx8f5v7/xDQ5PT9Pq6xjFCpOFZULSxDUtGnqeRAgOeS5mqcjZzN+gB/4l6egQ\nCA1hWoiaxLFs2h2bfH6R1ta13rEQAsPoY3p6fksSeqlUIlPO0D3Uve7jlm2RWcpy/sI41SuXMAsW\nU/VFHHxma9Pomsl0fYIT+fOYyd3k9Bkc06G8mCFkHKK75QsEjQiupxMNR2nUdYbSaRzX5fzcCt/8\nT9/jf/nffveh3kCmqIR+X6bOnuXJpqYNf7iH29r48cWLOE89hWmamxzd+lzPRdM0ljNZ6vUIi/lx\nSlYJP+wRTUQAkEC5WKLSqBBpC1OftbAqGl69i/npGoNDTXT1NlGrVvnWewtIf4oDz33UnnKhzmBz\nO8bNVTHtAZPlmVlSB9cSXlNrEzPnZja9VzsxNsb1t99m/MMPeXpykl/t6SFTKDG+kKGYyaAZdcLR\nJMFQbG2ZouuwVzexG0u8lf1LdvHbNBl9+N4kyUAzCwtLhJImC/klTDOErhtEIgkCgQiVSnnT2vFx\ntm0jzPU/b3NzC5w/P0clp1G9Pk17VVAp2RSMEqWGw9nsJaY6Jkl1pwgGmokFu/A9F62Upa+vk+n6\nNcbtKh3W80QDIMRHvzhNw+DJzj5OX/w7boyOMrJve1Ywua7L/Pw816euU7fq6LpOW6qN4V3DaiXO\nx6iEfo9WV1cRmQzpexgLDpgm7Y7D7MwMQ7t2bWJ0nywYCOK7PqulGrlSDUezadC4lcwB6pU6lUaF\nQCxII2/jVdLg2RBK0rAF5UIO0dJCLJ4A3WRyPsDY1TJCK9DUEsHP+3SNfDTx2RyLMzM/j713DwFz\n7YpARpPB1MwUhz+2Ff9BunrxIstvvcULra1cmJjgl8JhSvU6hi7IlicgFiBuRPBdB8+1Mcy1SUEh\nYFcgwoXGEh8W/obIaoK90SBz1VamJpZwIzZzi4KuLgdN8zHNKqmUQU/P1syN3JwUu+P+K1dGeeeN\nq8SzFp2uS7KYoTcYoazZrBRmcEslpm2dqH4Mx/Lh5ryaY9UIAQEzQAtxykGD6eXv8WzoCK5rEwx+\nlBp0XacrHmfy1Cl279mzpRuQpJRcGb3CiUsnsAIWgVQAS1o4DYdL45d4++Lb7O3Zy2ePfpZEIrFl\ncT2sVEK/B57nMTo6SmbsGu8tz6JrOvFInO6ObhKJxKf22NPBILlsFrYpoXd0dMApKFfLlBsV6sIl\nEPuody1Ze8yMBmiUGhSWQvjBJO5cFhFI4dlFipU6c/MrNKXCYGhoCQOp9zN51aeaznBscA+x6Eeb\ninRNIwTYlk3AXJs/CIQDlGub06udn59n6e232RUO89dvnaIytkQp0U+lpFOq16hoDRzh0vAhroeo\nVvPU9QCu52JbPsIXdDUsxow8djiDu9rCci6PofeTT0XI5UYIh5MMDY0gpcfY2Hvo+hgjI3309W3u\nZG84HEbaEs/z8H2fldUVpq9c4ez3TjNc8NgbjbJay+MUF8gnYpihMMG6RUu4RptMspy5QdbuwY5I\nfNPFt2oE9LW/f0jTKUsHs1WQd8ZoryUZGkzeem/HtWmKhkhWKiwsLNDTszUrXqSUfHDqA07PnibR\nk2A1W2LmQgbPT7CWuoL4fpmZ4k8ZnRjld77+O9u2kuphoRL6Bt0Yu8F7595jOjtNtyjgJgI40qFY\nLzJ5cYqmYIoDIwdIJpPrPl/XNPxtrAsSjUYZ6Rrh5FvncEUIy7GJpD7qXVp1Cw8XzxWsLrjgJ/Fq\nNXQnjW8FcBo1amGHfKmBXavhUcM1PRaqddrNDlIJSV/nnZOdApBszVLVsQ8/RC9Vef2iw3wmxUio\ng2Q0jS99slaWZKKTmmWTL81Rkzq+G8LyddBMHKeB4zcIeXWcoo4W3sMlorR6/Qh3gVKhgL/oEgqF\nkXKUoaG9pFJNDA4e5tvfPsPXvqbT1bWx8rz3o1ar4a/U+cl/+Sb1WglzZZVGrsqeFY3n2nvI1FZx\nAg1SsRBxDepWBdeUaLikwxHagmHO5qfJewmqRo6wlB91QKSk4awy1NmCW6xSbcySSj19671Xy4sc\n2xMnHQqRmZrasoR+ZfQKp2dPE26PcOLUFEJ0EI/3Yegf74hIatUi5xev86d/+Wf84e/9AZFI5FNe\ndWdTCX0Dzp4/y7vX36V9dzs96R60zBKh8FpPNBwJQ3ptIvH9i+9zdP/RdYtUWY6Duc1LFw/tP8Rf\nf+evaVRXIRzH83zqNYtqyaZWqVEXdayqg1tMoAVtqNQJJPeh1UHLLxGeLRJwJmnXDWKBIK7h4Iaj\nhFt7yK0aVKp1YtGP2iiRWMjb5g2smkWyef2T3i8in88zefoc5Uya7vQRisWT6DcTVt2q4ZkevuOv\nlcn1UziOABHElxoV26Jox3D9fkrSoeL3UDd3YeurWJ4GcoCcC9HlN7GcMowcQtMucfBgjFQqTSDw\nHN///nv81m+1PfClfbZtc+rNN3HGxjhqSabni/SGGgy0tvD2lWUOiiDTC1ewUgFCoSD1Uglhgev5\nZBsFgn4QPZAHV2ckGGKlUaVUmSZi9CCRuJ5Nw83TnIqRCsfI1VfxAvlb7fClj2SO4a5+qo0GTq32\nQNv3SVzX5cSlE4Tbw5w+PUcsupdg8M7vj0AQjaYIDz7D2MX3+ft/+C6/+Ru/tiUxPoxUNZ67mJic\n4N1r79Kzv4dQJEQynSQjBK7n33ZcNB4l2hHlwysfUlvnQz/nOLRvUc/mk7S0tPDS0y/hLC1QXs2z\nPF+hnDfRtBZ0M4nrhHCrOr4I4q4U0Ff7SWQFsew4+/VZ/mnI5rVYjKdCUfoaGu3VMMPBCMcMnY6F\nApfOXsd1P/oVUqzWMJubCQXXTn6+7+MXfAb7Bz8pxPs2OzPDzHidruZDmLpJMBij6vtICQ23jo9H\n3a5Qr5sIoweLMNJ1qFgVSo0WDG8vMdGHFC002EXF60KYv0zVf4ZlmvC0Z7HkCJncG0xPnWV1dZKh\nobUeeSSSoNFoZXZ27oG2yXEc3vvHfyQ9NcXx3l4G29vpXJGE6oLVYoUmVyMVDOObDo1yiUzWZtWK\nAM1AE3otQjLQSiAUR/oZAvY8yUYRvzFJzprBdlYI6GVCEY3mWIp6fYWOjjh6ZO0XlZSS+ZVRDg2Y\nREMhPN9H36JJ/fn5eRpmg6vX5omEd6+bzD9OExo9uw/zw3fOsbS0tCUxPoxUQv8UUkpOXjhJy1DL\nrXomgWCA4K4esoXSHccHQ0FkVDI7P3vb/YVKBael5aGoRHhw/0H6mlopnF3Bz4JwfKTjYFdr1Bez\neCtl/Gkw5vbSWmsi4BVIeRd4Lh4lbgbRdUEoKIgnBCnfoTaTR7qSoWia7myRidFpfH8tIWTqddoH\nh269d245x1D70G0VHR+UqfFJNHoI3NzG397cx2wwQtVp4Emfer1Go27geiFkPUfMs1i1HCrOEKY/\njEYayw0x5oOU3eCEqbtZaqITYf4Kvp/Fkil8nmFm8W9w3CLVauXW+ycSA5w7N/VA23Tx1ClaFhfZ\ne/PaptPz83ylq48Dbis3JlZp9jxyTpWq6+M5rZgyhQw2U6pXcQoOaS1JNBDEDCZIpAeIRE26A6s0\nRfKE9UsYRp6g4VMXDrGwRVdXlObmFD4+tmsxu3KZka4VnhtZ21S2UquR6Pj0S/g9KNenruOaLtVK\nkHB4Y5+XcCSKGwxz6tSlTY7u4aUS+qfIZDLk3BzR+O11WdqG+7nuedQt+47nxJviTGemcRwHANfz\nOL+6yu6jRx+KNbxBM4jp72dX/xChWppgrhXrukPlrIs/24ZhH8WsH6WDTgwRxC+c5mmjSFTqaA4E\nfJ+glESEJBjwiTs2o+evMz4/T8i2EFOL5IsVlooF7HQzzem14adKsYKX8XjuyOasxR+fzBMNf5Rs\nEpEUjeY+LhYWqZRLFColrIaB4TUIeRZFC2r+MAHRhyZiIMKUhM+82IfQnsaX7ThukRoFHK2MFxrA\nMScJpjvRo7u5MPstfvjB/8P07CWklMTjzSwvVx7YFY4ajQbLly6x92YCdVyX7OwsA8kkn+/u56je\nQbioc2MxR6UUQzgmVCzcnI9TjNIrOggQwBACz7ZAaAQirYS1EK3dAUZ6TAbTM+S1yzR3GjS3RECX\n5Msr1GqrFKvv8OK+Oi8dGkbXdVzPY17T6B988L+u1lNr1FheKREIfHqJg58XSzZx9eoyjUZjkyJ7\nuN11wE8IEQTeBgI3j/+vUso/Xue4fwe8AlSB35FSnnvAsW65mfkZAqk7d3fGU3HSn32at7/3LkOm\nQSQUwNA0UvEoQdPAMzxKpRKRWIxTi4s0v/gi/Q/JLrsbN5YZ6HqBYNMMNzLvkJsz8CoHMI09uIki\nQpMErDlESOLIGUYCRdpoQ280CBgCPaBRtxq4+MigJOSt9dSXCnNcLDcIliK8+/0i+179HIePHEF6\nksxCBpETvHb8tU1bM2y7BhhBPN9jubjEpbmzjFenmKvM8BnLwmpYhMwopmvTcEIU/AAaYSxpExAR\nGtLlHHUKxvPoWgRPDCIadTRtGj/ajClbkH4MXW8QCj+BK0uUjAIXs29SrRfYN/wivr/2q+5BnLhn\npqbo8jyMm3WA6rZNyPcxbi4ZHGppITeVYa5gkDZ3ozUEQmg0DB2tLcpyfpqQH8BybGzh4khAQM3V\nqNSrBCNhQOeFo7toSobIVeZwfZC1Il9++kk+f3DfrfcGGF9epuXAgS0rjWwYBqVinVDk3orcaUJH\niBj1ev2hK+O8Fe6a0KWUlhDiC1LKmhBCB94VQvyjlPLkz44RQrwC7JJSDgshngP+PXBs88LeGtVG\nlUDw9oQupWRlcYXx0Rxz3i5OjzcINxyaDQgGsvS3+0T8OmJuDrq62PXLv8zw3r3b1ILbrVVWtDhy\n8BiV0xZmPYwZShFNC8rX3kRHw6+ukjCKJGOH0RoNdskQGhqeG8H1G/jSwjd8NF0gPECHeFDSsEsY\nDZ9C0me51EDemKa5qZe4FufA4AGeePaJTV0nnEwmmTMN3h17k6nqKHETntjTT64lzDtn3mOkpOFr\ndVZtg4ZsouA3YYgmXB8aTHMZh1HzNYJGP74PmuegMwSyjO2UEAZoshvXnkcYLQg9xdJ8jqeff4GJ\nqXOYEyGSce2BrdHOzcww+HMVOz9+oggEg5xvVFmtdOBoa2UXNM3HMG2isTBOehflpctU81miyfDa\nJL6EvAEV36RoSqLtSfzVDLu6uulpSeO6HlkryGcOHLgtmU9ls8ymUnzmmWceSNs2oi3VhlVpEI5t\n/OQofR/ZkISaoo/ttWA3NCUvpfzZLF/w5nN+/v/WV4G/unnsCSFEUgjRLqXMPLBIt4GhG/j2R5Of\nvu9z9cwEU6NhwvGDNLWamCJPLVdisVDCd1qZWLBp2Nf577+4n69+9bWHqqBRLpdDiHbi8TjP7H+a\ny+cvEnDb0A2dSFsMr7sZ48YsQ1qdUq1IyK4R8XQ0CbrQcD0dNBfDEPiujyYFvvRx/ALxYIOWpm7s\nrjSuA1ndw825/Ma/+I0tKZ8bjQZYcMaYL19gX1OKeGhtEq2jrYur8SYuLa/SVYswKLqJkcCRcRoi\nzBQOE+xhSXsCQ9po3gqIVjQPECGgDc0u44oomiewLRuhg64b2I0QruuQ7uvi/Okf8t/9Ny89sPZ4\nto35sc9OwDCoS4njeZyYX+HsUpDzXjfNohtT70TTBL70KNcrlLMOkbCDlhrCqWnM+2vLFKuNCjeS\nUez2dgYHDY4cO8L0pXG+c/EMR/uH8co+n+88QNA0PyowVy5T7ejghX/yT7a0xzu8axi9JrDtBgFz\nY+9bLuToTOzGNOW21k3aThvKNmJtL/BpYBfw51LKUz93SDfw8ZnA+Zv3PdIJvbWplUtjl+BmQb1r\n56eYvJYkGOwmd32BcKVOu6FjGjrEY9Rdh6wXJucf4coVm2PHMnR3r197Yzu4rstazXOwrDIjA79E\nw25mYu4isuDRCC2TaNRpMQRoV2g04uhaE0HDQAiJkBq4GuChmToCieUV2JXOkq+DXqrhBQySA72w\nr5VMJcPy8vLWJPS4zZJ/jUAyRc6uUa5ncewyrmNTyq9Q1l/kitPBmO4TEGUsEcCRPRT1/fhiN6YW\nRsoKtn8KTWoE/DYcPHwRBa+OIIovCwhpI+0aZsJH10P4nocRCGCFlohGH1yZZD0YxHHdW/8OBQLE\n2tr4uws3WKkP05ccYrTZw6uVqVt1ouEwmtAJmFE8LUA2N0M0XiMQaKEhw9R9i5WYhvnUPtx6ntbW\nBJrQGDw4zLim8frJG/Q7CZzsJd66fpVwrIm+w0fY/+Uvb0sJ6FQqxVN79vHW+DixXU+ve4zt2BRz\nOWr5PK7jUFnIE+lsI9Entr0G/3bZaA/dB44IIRLA3wsh9kspr9zPG37jG9+4dfv48eMcP378fl5m\nSwz0D/z/7N15cF3ZfeD377nL2/eHh30nCO57c+lNTUmtpRe1FmukeGasilMzcSaesmuccirlzJTl\nqqRSqZqZJI5nakaZRLEn1tg1smW1Nqu1Ue1WN9ndJNjcQBLEvgPvAW9f770nfwDNJpsb2I2twfOp\nYvEB716836kH/N65557zO2jnNWzLppArMHQFNBIUL92gx+fFF719CCGIh1CpTHNJpzjh4eWXT/Nb\nv/XFTbNX49LVQgGA6elZIpE9eL0x2lraiV+Fdyb/En81gM+s0ukRTLnmqVSLmHYjhtARugDpwk2J\nQqWILReo88yT8LnI1nQSHjdyMct5V5L2Z/ezkFvgzIUzdHd33z+wD8lxHBZKc9SsSYKam0oxSaBm\n0Wa6WahYUGknYAQpyRimtoOcsCgIB4MusHVsLKRTQ+AHax9CXsbQG6nJApqhgQQHG01A2dbwuSeJ\negxq5TwIWFycpKM3zEx69abLxdvbmblxg4ZbtryzXB5OzyU42bwNIQQNwSauhAJY+XnctoZtW5Rr\ni7hlhjZZRUsWsdwFXF43A6UiIy1xjEIVO1dEF1FSkynGr4xTSBXwRD30PvMUqbkUk9OTlMuL6KdH\n2THez1df+Co9PT3rXofoi89/gV/90f9MNjpPKPbeDDHLtpidnKQynyQE1Jkmmbkku/RerImrECnz\nqx/rHHr66Y/sIqNTp05x6tSphz7vocYDpJRZIcQvgM8Ctyb0SeDWtc+ty9+7w60JfbPzeDzsbt9N\n/0Q/C8kSlVIMfXyM7aHAbWOM75JIKvkKO9q3o7lcvPF6H4PPDrJ9+/YNiP5O8XgcKYeQci+VSu3m\n5gaGYRL1NbHNDDEfiJPNTeAyTcyQi8ncPC32AobtwYMbR5bR9TwJdw6waPL7KVUtCgg8bgPDtijW\nSlSqFVx1LgbGBygWi2v6hzUzM8NkbpJwZYKmcpCWhnYqtRqzmQV+uThPxdtLM0UGFiz8Akxp4jgT\nFChhyxKO4wdMdEfHRQtS6EhSCEqghXBwgAKCCWxRh8t9joivhZozwdz8KC0tNfbs3klxZvUW3bR3\ndvILw2C3ZWEaBo7jMDYvCTfsY7KQpzUQJOH3EQ7FSeElVbhKe3WaTuHCjQfd8FByBDmzClE3UU8d\nu4WHq5ccGpsjNMpGxq6OEW+Is/vJ3Vw6c4nTl07T1NtEW08bmq5hOzYTIxP867/+1xztOsqLJ19c\n09Ww7xePx/lHX/0K//7/+wHl1hLhRB26y8XEjRv4CwUa/V4KhTzF2SI7XXsIe6LUBW/w0u7djE1M\n8KvvfpcnXnppU+4e9iDv7+z+0R/dMQ/lrh7YdRRC1AkhwsuPvcCngKvvO+xl4GvLx5wA0h/18fN3\nPXbwMbxZL1fOzWEv1Gj3ee+azB0k2VSOOn+CUChEyOejVW/g5z95YwOivrtwOEx7u5t0eg5N05By\naRGQbVuIbIYGmqjYC5zXk8zGMtSabaZbYaalyERkjpRnDJ93mrg/hVer4aqApgsWSxLDY+I2dSZr\nDvVtcbJj0xgug5JVujmFc61ks1lGh/s5HvSzvV4nV5qj4pSZMFNITxO6L0rQJaloiyS1MlVzBE3P\noRPCZ5zErX8MTfsU6E9SFQY1madov46mL610xagAszhiAZeRRBom+dwkjYlZ/K5Rjjy2C13TV3VY\nwu1207h/P1eWF8lMLy6SL8fY17uLRX+A4WyWmCeCqc/THN2DhZtZQgy4XfQbZd7RivQFNK6YDaRd\ndbgcN6Fche7sNLY1zZVLVyAK9T313Lh4g0qogqvdRaQhgqYvpQVd02nqbsLd42awMsh3Xv0O4+Pj\n9wt71T3xxHH+8d9/kbpSiOJgjqu/fAvrxhh6ukx6eJFEpoHj0acJugJE/AN89sg2DMOgu76eHaUS\nZ378YxzHefALbREr6aE3AX+6PI6uAX8ppfyhEOK3ACml/Mby188LIW6wdE3/m2sY87ryer184olP\n8MqPxnCmkpjNdbc97yApF8rUilUS/gRtre03h1ja4g1cfOcXWJa1aW6OHjrUzd/8zVXCYS/T0wu4\n3SHy+UVEboqSO4NL91A0QkithlvXqArBQqVMS1iQsQXp+RpHhCRYE5imZDZdYtrRaY+6mChUGQu4\n6G6MMpXJU46X8Tv+NR9/nZ6ZxlssEPN4SQQD+Nx5Xhnrp2KCLhKUfCYzyRK+yAQLGYFL7sNtHANK\nSMfCZTjYtSIIP0LfQc2KIvkOOrNYmgamBc4bCGME3V+h4tgIM8mx7dsp21WQUMgW2BZZ3cJre48c\n4fVkkkvj41SKNUy9FdMw2NXTw/jsLP1zc2h6leGpVzhixPFFepkspJmpLSJcOtiCWjnPPBMEfQ4J\nU6deWyA9V+RqdYpFu44bl28Q2RshUB+4bQLAraKJKMmRJK5GFz9+48f8euzXV63Xa9s2yWRyqTyw\nEPj9fqK3DDMJIXj66eM0Ntbxs5+dp3Zdpzd6GLfpwfSaOLJMzbrCvg4PR3q247nlZmh7IsHE+Dgz\nMzPremWxkVYybfEicPgu3//37/v6n65iXJuK3++nLdFMtObHKZbIZrLL48lLu/tE/VESrQmCgeBt\nU8vcpom3WmNubm7T/EK1tLRw4kSKn/50gnI5RzjcSS43zaT9NomWBloW9qFX4wyX+2gRiwRDkprX\ny2S+Qr3moEdtLs8JnvYsFd4aqdTISrBzJXIRH57uOEG/h0i6xlgyS6fZuebb780PDRM3PNTswlKJ\nXtMkXO8m6pJkZy2K1QpTHouYO0e6IKha9biljal7qDGPI23cup+ybeM4El2v4di7yMtFpP0rcM5D\ndLgezMAAACAASURBVAyzPkogtB3BALsOepnzZZkYmkI7U0+Dr4Fdn1zdWuGGYfD4pz/N2b/7O976\n0S8o5KLEg0tDMJ1NTUTDYdJGDc98H07wEFnNhccbI26Z1LAoOHm09Cw9Wo5G2423mqGhyyBnmURM\nSbVc4e3BWea8BRpDbQRd916RaQQNkpkksWCMweFB9u/d/6HaViqVGLp+nYnz5wkWi/iEwAHSjoPe\n3EznoUO0tbXd7Bxt376N7Pws+3NDCHKUKhlMQ5AIuels6Lktkd+q0+dj5OLFTfP3t9Y2R7dxk3O7\n3TiVHPXxdqKBAJVKBcu2EYBpmvecIlWpVYh4NKrVO1eUbqTDh/fhcpn823/7I8bGQsymL2HWeTBd\nLjQELZ491CpFhuQ56rNlEpqgislQtUjcAFdM8vqMgyFgxmdihb1cq9bo0YroZhwpQROQn8zz8a98\nfE176I7joOdy1JsxCrJEzbaZKGVxBQxMATpFpGNRjQnm591EglGypVmELGPX3Biaju1MYkmJR/dh\n6R5qTgVbJIE58HwHY7cXzd+MnsnjzlwiEljElQtCQBLo9DKSG6EyWSH0xdWfZ2+aJic+8Qmqhoef\n/KjIhWIRp1YDIXAFg4S2NXMs+lmGr1+mUEvj9zaTX5CUrAJO7hp7qjnCWgXsFJa/xGLKg+bWCek6\nhZrDgTYvw1NpphD0fLrnnnGEIiEmhifoOdpD37U+9uza84Hf14WFBd7+/vdpLZV4Oh7H975idsls\nlhvf/z6Tvb0cPXny5s3Y+YEBTnZ33zN5301jNMr54eFNdZW8lrZ+C1eB1+ulqckkfSNFLBhc8Xzc\nbHGS7ibfppnl8i4hBPv27eJf/Iswf/In36F/9h2CXo1K2cFxsgQCXiIek2j0CaaTo5QKKfTqIqbP\nImNoVNwSpyRodZu4mkIkIi4K6TxZzUuPY7GQnCdTtKgT3R+6J/cglmXhd7vZFW3jbDZDpphjsVqi\nSoGiXcHWJGU7guaVlMxmpOHGJVNYVYkUIXRhYmoCHEnFXsRyBDizoI2CloK6MJ7yDE2Zado1h45Q\nAyFD0parkU3PMl4u4tvpo/5QPa+deY1nn3l2TdrZ09PJpbYR2tqewHEchBAIIej/1V+RzaRJdLXS\noEsyqTmKIxdYLExw2HQI+Kr42izM4FL98EqmQmmuhEiEKeY03PUmPX6d/LUF9E/eO0FruoYUEtNt\nUpIl8vn8PUtF3082m+Wt736Xw6ZJ4h695rpQiHgwyKUbN3hTSh5/9lk0TaNWKuG+ZThmJTRNw2Sp\n0NmjkNA3V6bZxA4e3UEyP7Li42tWFdOYwRsJb9q77M3NzTz/wgF2HXfjrhc0toTYtq2BqpNB+CVe\nt49ErAHDZdMQcGjxeol6TLrqvHS1ejCDboJhk1mrjFbvQbo1wl4v5dkkN66m+dqLX1vz+cC6rmMD\nB1u78NSCzNg206l5SnYJ0+8iFi8jRBrNqSJc9dgejaJfUvPMY+uTlEiSsyukhUXe1JCuMvhGMFpz\naHELX8nF4VKGx+MmbeEQIb9GY8RF3O8hIi2OGn5OWkFYzHF14iqZTGZN2tnY2Eg4XKBYzKFp2s2h\nvXwuS9Eq4gv4cXt8VJ08TlOBpnqob3bha7VwR000Q6AZAnfMDRFBsVCktFACDaRtsz3kZf7a/atF\nSikRmkDo4gPf6L50+jS7pCTxgA8DIQR7W1rQr19nbGwMAN00sT/ADU5bynWfR79RVEJfocNHj2JE\nF5hMjTzwWNuxmVq8xK5WA625+a710TeDSqXCbHKW7p46OrY7TC6eocI4c6V3qIpFyrUxEoEiLX6D\njmCCqCdKzHEjyw4LlsWMgKShIwNuWuvDVE2HoZEFFq+W2Ve3n09+8pNr3gZd1/E3NCCBz+84QSop\nmS9XqC4vZvaHDAzPDWStimGArQmkJZAeDdlgIRJpiE2jhWeQvjEs9w2MJgsdgd826LWjNGghyFvI\noo2o5jAtm8qihd/xc/TgcQ53t9Myk2J6coiBwYE1aaemaTz2WCfJ5OXbZm0k83nk8ghEPpMkbU3h\nmBo9Xi9OrYDhfd+ibgGGR6eiOVScCvnZPAF3gIb6IM7gLHbt7puwlAolIoEImtCQtvxAvd1cLkd+\ncJDWFe4qJISgJxpl9J13AAg1NpLK3lnl9H6yxSJ6OLxhe/muN5XQVygYDPLxl04i6WMidYOaffce\nSrGSZyLZx9GeKobfQ+ehQ5uiyuKtcrkcr7/5On/6N3/KW8NvMZgZxG6UlFpqVFyj1MfzJLwVeupj\nhNw+Qr4wthDE/DES4WaCRoyS48YjA9iZGmbJITVZJD9VYW+6nhfbH+P4zl0sLCysS3s6Dx1iJJsl\n5vVyMNpIb6iX8XHJaLJAuebg9aeR8irVXB5hOXgNDdsRlJHU3FDzWlRdNYSWw1tXxOPxoNUsmi2d\nkNvA7w1iVvy0uKMcTNRzqGEbLaE4kbZ2IrGlYmM9iRiRdI6+/r41a2dvbw/79mlMTJzFXt79KmcG\nSOsOUjosZCcww35EpYKPMtGEgUt3USvXsGo2ju3gOBKpGaScGmbEROQFwWAQw9DwOzbV8t3v9xTS\nBbpauqiUKnjxfqASyGODg7RrD1fvpi4Uwp6cZHFxkY79+xnJ5x980i1GFhboOHx40/0NrpWtP6i0\nig4/9RS5qSnEyDBTi2PUrEbcZhxN07DsGlVrmog/w2cOxaiisdjZuWmqLL5rfn6e7//y+1gRi8Se\nBHbYJjOVoa65jmhdlNH+frJWCrtUwJszELYLv9tPTYPFUg6BoOwJ0e6L0Wm7aApqBPxevIZBxYFt\nRgvNBw6g+f3kcrl1uTppbW3lmt/PpcHr1DeF+MqO42jndAr+Mrl8Hm+tQiBRQFbPo7skthXDqBjo\nFjiOhSYz2HIRAhLMOKKioZUdosIF2jR6JU3c7eXgtgDN0TALxSKlYJDWri605T6REIJOl8nVkdE1\na6cQgqeeegyP5wJnz/4MaMHlDTJbdtOYXaRMDtuqYVdT+OMmvvDS7CLHsalUqti2tTTN1jYgFqSp\nvYn5/nmsooW0JaamI507i1pVyhVcNReJRIK50TlO7DjxgYYwCgsLtH+AGU8RTaNQKNDc3MyVYJCF\nXI7YCj5QCuUyU6bJyU32N7iWVEJ/CIFAgCe/9CXe+sEPeGxxEV3myZVz1GoOPo9GW10YQwsymMlQ\n27aNY5/4xKYau8tms3zv1Pdwt7mpiy7Np69vrke7puHYDi6Xi649e7BMg4HRK8hcEl/NIVeWSNND\nSgiQFhFHUO9IPra3g7DPR9mymM4XGcuX+MQzBziwfTuXp6Zu9iLXmmEYHH7uOf74f/zveLI7hss0\neKy1k3cK4/QeaKK1Ic7rw/0YYhZbS5GuLaJXTLxVqMkajrtCwG3iNwwKlRTZLASKRcxAnrg2Qq9f\no6E5hMttMlqtEmxpoa2+Hl27/b2tDwW4MLS26+k0TePYsYPs3p1nYGCYN995m2KoyNsX+2ipq9Hc\nHmIhZ6J5zFvO0W9OHS2UahTiOgmfgaxJzIBJfjaPO+BGeN03N3J5V6VcITeV4/ie49TKNbSsRk/3\nvWfD3I9jWWgfoKessTybSdc59JnP8PZf/zXHhCByn/szhXKZ03Nz7HrhhUeqjK5K6A8pEonw9K/9\nGsMDA4z19RE0i4RYKj/ZXyggGhvpfPJJ2trbN1UyB3j7nbdxYg6hW2rQuNwu2hrbmJidINocxTAM\ntm3fTt4pUq6V0fIGoVoRv9tDl2t5+thYmpjXx3XLhmwO3WUiAhE+9/gTHOrtBaAChNdx3DIejxM6\nvI++9CRNs0mawyG21xq4PjZLvClEw0SMJDMsFGYxOrrwuUzkQpFAAZycScjrBw38WLgc8Ohu2iNp\nDjRG8MTCaPX1VH0+6mMxgoEAgjsTU7VUJuoJYNv2mr/3gUCAQ4f28ZWvPMO0Ns3lNknu2gU6gwGi\nTXFmxucJxt4rtyAl5IpVJkwd0RwgIr1E4xHKi2XKs2WkZVBrCeLyLQ3I16o1sgtZ9JLO0V1H8bq8\nJK8n+dyTn/vAN/ndwSClD7DStMTS1GGA+vp69n/hC5z54Q9pyWTojMUI3NLrL1UqjKZSjArBjuef\n33RXyGtNJfQPwOPxsGvfPnbs2UMymaRSqSCEoOt9q9w2k2KxyPXJ6zTuv3MLsW2925h7fY68J08g\nFsBluqgL15EsJXEqDl53iPbI0qyExWSBXYF2jj62fWnGgwDblswMLnK4Y2mlZM2ymNd19tY/3G4z\nH4YQglAoROLJbaRmkpy/MoT0+BDFCOcuzuHEG4l6vBRnxilMuKkF6xG2huNo+E2boGPgZCRa2Utv\nqJnJwlnqvGOEwhEa/X6MYhGKJdLz86S8XsKNjUSiUTTx3nhwNVejsb51Xcdr9+/Yz/CZYdr2bOOs\nscCZhQJ+b4DZwiQNrqVKoKWaTVJANe7D3RSkkq0QjUfweX00xZswbIPhbJ6p+Srld8bwhX14NA87\nW3YS9AYpp8pQgc8//fkPVT20qauLG319dDzEOcVKhazXS13deyu0GxsbCf/6rzM6NMTrfX24FhYw\nhcCSkpLbTeuxYzy5ffsjWXFRJfQPQdM06tcxaX0YY+NjyODdp295fB6OHjvKW2++RSqXItQQoq2p\njeJQkQUWKEgv6WyBWsYibgU51LsNY/nSvFazmBpZ4GTzvpvjmuOpFPV79tzsVa0HIQR1kTrKxTKN\n7U00tjdRq9bYZjscQ5JbzDE5NcnowCjvnOtnfr6GNJuRhg9L6lRknKjXQ3OTD68/RaeR5YAeYVui\nHo/79iuNUrXK4tAQE9EoLV1d6JpOLpPDcDzUd3Ss67qDpqYmYnqMOTlHwB8ifqiLXCpHyhD8/OIg\nnQkDoymMO+zBa+jUKlVMaeL1eymXylTnqjxx+ONsa2/nvzpyhBujNxieGsblcqElNYLhIB/b8zHa\n29s/9EyRhoYGLsViZAoFwivs5Y+kUrQ9/vgdv7der5ede/bQu2sXuVzu5sKhQCCw6a6M15NYz509\nhBDyUd1JZKO9efZNLmYuUt9y7w+gSrnC1OgUQ2NDVIwKtmbTf7kfM28SrFZ5dvceWhvjGIZOpVoj\nlcoh05Jn2vawq7UdgHypxOvpNMe+8pU1227uXgYHB3nl8iu07mi973G2ZTM5PMmN/lGu9s3SEe6l\nu6uLlpY62tr8ZPrepsW2yfb1UajME27w4zJv7/tIJPPZHOVojGhdArko8dd3UPfCC2zfsWMtm3mH\ndDrNt3/8bd4efZvQ7hBunxvpSEZPX8V75QYNfg3To2PbNk7OoT5ej+7oaFWNqGgmcvxJjn/hCzff\nLykllmWh6/qqfziNjY4y+L3v8WRzM64HfEDMZzL0OQ5P/72/t+blIzY7IQRSygde+qkeunKT2+Om\na0cX7T3tZFIZatUabWYbB+IHmJgeZfDca8isxKUbuKXJscbtbO9svjmGmcpmOZfLsfuFF9Y9mQO0\nt7fjPuemmC/iC9y7XK+ma4RiIbp724ibIb74qS/Q3t5OIBDgF3/1VzxeV0fA4+HU0BB77QDXZsfJ\ne0sEQt6biV0g8Jsu5gbGcJf9HD/yBOcsi8MbMGYbiUT4tU//GplvZTjz1hmaDzQTCAfoOLGTZCzE\ncN8gwckMcc2ktbENv+kH3c31QpHEU0/w+Je+dNv2gEKINZu33d7RQfHkSX516hSH6+ru2lN3HIeJ\nVIp+ITj6+c8/8sn8Yage+iOi/2o/p4ZO0brt/r3X9xvvH+dzRz5HW1sbly9e5PprrxGvVOiJRAh4\nvUgpyRaLjJTLVGIx9n384zQ0NKxRKx5sYmKC7772Xep31OPx3T67wXEcpkdnGOpPszjvITdnsrfz\nAPF4EJimvt7BPXiRF3ctFdkamppi7Nw5DgWDpAs5hhZmKMsaQgPHhojpo84TIptIkGtro/O55+ja\ntroVFx+GZVl853vf4WdXfwZRELpASEHIGyKsBzGzJZzyUh2YdMHi2See5xMnV2/bvIcxNjrK9Tfe\nwLOwQJvbjdflwpGSTLnMmOPg7+5m74kTa7oP7UfJSnvoKqE/IgqFAn/2vT+j+UDzii+jq5UqmWsZ\nfuMLv3Gzx2bbNpOTk0z291PJ5xFC4IvHad+5k/r6+k2xgGN0dJQfn/kxhCHeFMfldmFbNhfO3GBs\nIAjEcdsBDmw/QFNjE7CU7N858zLtY6/y6ad30dy8dPN4YHyc0YsX6TEMmgMBpJTYjoO+vEBmPJvl\n+wsLfOz3f5+Dhw5tYKuXOI7Dm2ff5NzgOWRQkmhJ3OzhlotlUtMpRE7w+J7H2bdn34a+X1JKZmdn\nmR4eppLLoRkG/liM9m3bPtDCpa1MJXTlDj979WeM2qMkmhMPPhiYHJrkaONRjhy6+56Om1kul2Ng\ncIDzA+epalWuXxljeryJeKSX7qYuWppb79hF6fqb32N3NolTmeTYsRYSiaWZFalsluGJCZJjY8Sk\nXCr2BCwIQaK9nZRpcvAf/sNNdYP83fZfvHGRUrUEQMAb4EDvAbZ1bfvIbs32qFIJXblDOp3m2698\nG3+Xn0Do/lO6FucX0eY1vvSZL32k//gty+L69eu8/PIwra1P4ff771mH5PqZlzlQLuDWNCzrGs88\nc+C2q5lytcpiPo9l25iGQcTvx+Ny8ebUFB1f+MKGDjXdj23bCCE2XdVPZeVWmtDVO/wIiUQifO6Z\nz1EYLjA3OXfXlZxWzWJ6dBoxJ3jx4y9+pJM5LK0inZ7O0th4kHA4fN+iUpo3SLlWwe32USx5WVxc\nvO15j8tFUyxGWyJBYzR6sy53wXHWdYrmw1qL2SrK5qRmuTxiGhoa+PKnv8z5y+e5dvEaTsDBcBtL\nY8NlG6NosLdrLweePLBpy/4+jFKpxMBAhqamYw88NtrSy+TEVeoBj7ue8fE54g+oDLiQyyETiQ9U\nG1xRVptK6I+gSCTCySdPcqx4jKmpKXKFpRrbQX+QlpaWTd3bfFilUgkh/CvqoUajTfR7g+QrRVxu\nL7l85YHnDKfTdH7mM5viZrCiqIT+CPP5fPT0fLBCS1uRpmkkdj3Jxbd/yL5gFPMBCw5H5ubINDSw\nv719fQJUlAdQA2vKlubxeHCcIiu9GV/f2IV7/0nOzI1SlXevDV6t1eifnORGMMjxz372kdk8Qdn8\nVA9d2dJ8Ph8dHT6SyVmi0TsLk91NS/seFjIjpOIT/GJ8nFbDwGMYOFKyUK0ya5o0HDzIUwcPPlKl\nWZXNTyV0Zcvbv7+Tl18eXnFCr1SKNDXp/NrX/hHpdJqZiQnyhQKaYRCOx9nT1obrIXaeV5T1ohK6\nsuU1NzfT0THE5OQ1mpruXzjLsmrMzLzFZz/bi67rxOPxB850UZTNQo2hK1uepmk8++xxGhqmGR9/\nh2q1fNfjstkUk5Ov8fTTCXp6utc5SkX58NRKUeWRUavVuHTpGn19E5TLcUyzDl3XsawKljVBU5Pg\nscd6aGt7uAJmirLW1NJ/RbkHy7KYnJwklcpiWQ5er0lzc4MaWlE2LZXQFUVRtohVq+UihGgVQvxc\nCHFZCHFRCPE7dznmGSFEWghxbvnfP/+ggSuKoigfzEpmuVjA70kpzwshAsBZIcQrUsqr7zvuVSnl\nS6sfoqIoirISD+yhSylnpJTnlx/ngX7gblt/q2IWiqIoG+ihpi0KITqBg8CZuzz9uBDivBDiB0KI\n3asQm6IoivIQVrywaHm45dvA7y731G91FmiXUhaFEM8BfwP03u3nfP3rX7/5+OTJk5w8efIhQ1YU\nRdnaTp06xalTpx76vBXNchFCGMD3gR9JKf+PFRw/DByRUi687/tqlouiKMpDWu0di/4f4Mq9krkQ\nouGWx8dY+qBYuNuxiqIoytp44JCLEOJJ4B8AF4UQfYAE/gDoAKSU8hvAl4UQ/4SlvXNLwFfXLmRF\nURTlbtTCIkVRlE1ObRKtKIryiFEJXVEUZYtQCV1RFGWLUAldURRli1AJXVEUZYtQCV1RFGWLUAld\nURRli1AJXVEUZYtQCV1RFGWLUAldURRli1AJXVEUZYtQCV1RFGWLWPEGF4qifPTl83kqlQpCCHw+\nHx6PZ6NDUlaRSuiKssXZts3k5CR9fcNMTVXRNB8gkTJPb2+UPXs6qa+vRwi1LfBHnSqfqyhbWLFY\n5JVXzjA15ScU6iIUqruZuG3bZmFhinJ5iH37fDzxxGF0Xd/giJW7WWn5XJXQFWWLqlQqfO97r5HJ\ndFFf333P4xzHYXLyPHv3Wjz99FHVU9+EVD10RXnEnT17mWSy+b7JHEDTNFpaDnLhQo2xsbF1ik5Z\nC2oMXXnk1Wo1BgeHGB9PYtuSQMBLe3uClpYWNE0jn89TrVbRNA2/34/L5drokB+oUqlw+fIcDQ2f\nXNHxmqYRifRy/vwVOjo61jg6Za2ohK6sSKVSIZvNYts2pmkSiUQ+8uOt1WqVV145xU9+cpW5uQim\n2Yimgdudp75+Ao/np7jdAp+vFV33AQ6aVmDPnnp27uwkFottdBPuaXR0HMtqwjDMFZ8TCtUxMWGz\nuLhINBpdw+iUtaISunIb27Ypl8tIKXG5XORyOfoH+rkyegXpkqCBtCRe6eXgjoP0dPfg9/s3OuyH\nIqXk+vXr/Mt/+S0mJ7uIxz9Fa2vXzSl8mcw8b7xxjkqlmYYGi4MHA+zbdxxN07CsGleuTHD+fB8n\nTtRz6NDeTTnmPD+fxeOpf6hzhBBoWpxsNqsS+keUSugKAJlMhus3rnNx6CJVWUUimRyZJFvN0rGn\ng+493Rjme78ulVKF0xOnOXv1LM8//TyNjY0bGP3KOI7DyPAwl197jW/9x59TzD9DV3wfdqrIVPIS\nRjhMIB5hYmICn+8xQqEA+fwEV69O4HafZ+fOwxiGSUNDF5bVyq9+9RZwicOH92100+5gWQ6a9kGu\noHRs2171eJT1oW6KPuKklJw7f45v/e236Ev1EdkZoeVAC5bPYs47h9wuuZG+Qd/lPqq16s3z3F43\nzd3NeDu9vPzqy8zPz9/xs4vFIgsLCywsLFAsFtezWXewbZu3Xn2VuR/9iMkzV9DtI+xrf5JYIEgi\nGKQrGCRWKnLl9K/IpAN4vXFM043f38riYhPXr09TKuVv/jzDMGlrO8bp08m7tn2jeb0mtVrlA5xZ\n+UjcI1DuTvXQH3Fn+85yevg0LXtabvbAi/ki/UP91O2oQzeXenkLcwucu3COxw4+hqG/92sTCAVw\n2h1+9vrP+MrnvgLA9PQ0Fy6MMDJSQNOWhmOkLNDVFWDfvk4aGxvRtPXtS/S98QbmlSu0RyL8xcQo\nYe/um0MljnQoV0uUa3lkxcK2SuQDWQKBEIbhBiLk8zGmp0fp7t5z82fquoHHs40rV0Z45pnEurbn\nQdrbGzh7dhDoXPE5llVD1+dJJPauWVzK2lIJfRVJKUkmkywuLlKpVvC4PcTj8U1782x6epozg2do\n3d2Kbrx3eT45OomIipvJHCBaHyU1k+LG0A12bt95288JRUOMT44zPj5Of/84Q0Mafn83LS2N7yVN\nx2F6eobBwWG2bx/m5MljmObKb9h9GKlUioVz52g3Df7NL37CG1OLRINeBvMalFzYuSoeW1AspahV\nPbjcU8wWWhE7n8bnq8PjCZPNBhgZGb8toQPEYi1cvXqFY8dKeL3edWnPSjQ0NBCNXqJYzOLzhVZ0\nTio1wZ499bjd7jWOTlkrKqGvAiklw8PDnOs/x1xxDhEQaLqGtCVOn0NLqIVDuw/R3t6+0aHe5sLV\nC/gb/Lclc9uyGZkYIdR7ZxKI1EUYGxtjW9c2pC2xaha6oVOzaxQo8H/+u/9AXfg5enuP3pGsNU0j\nHm8mFmticPAytn2GT33q8XWZKfPGqVNcHjjHUJOXGV+ZcE8zdkUyOTKElTXQCiEiFYOgE8DnVBGV\ntwjLVynULlBoe5ZE8+M4jo9C4c5ho6X4I+Tz+U2V0IUQHD26jR/+8DxtbU+g6/f/Uy+V8jjOALt3\nH1unCJW1oBL6h+Q4Dq+/+Tp9E33E2+K0RdruOCa7mOXlMy9zInmCI4eObIpZEfl8nuG5YZr2N932\n/Uq5gqVZGK67/2qk0gv87bffRJdxCsUKyflFqrUSwlshOxDkyO4EExMXaG+P0NbWQCAQuO18IQQt\nLXsZHHybjo4b7Nq1Y83aCHD12lV+dOrbPL2vFb/Xw8X5DLMzY2SmK/icFmLVGk1uE5/bhKxGSN+B\nEPtZtCawM5fAnmK6msQf28e9Fzlrm/JG4rZtXTzxRI433jhNU9NjuFx3L8SVyy2QyZzlxRd3E4lE\n1jlKZTWphP4hvX3ubd6Zfof2Pe33HBcORUP4g35O95/G7Xazb8/Gz4pIp9Pg446YpZR3/cApZUvc\neDNDNtlGIrADrzfGXKqG2xvH5XG4ce0NtEIB0/Th93cxPp5kdHSAw4dbqa+/c3y5rm4H586dZseO\n7Ws2np7JZPjxmR8Tbw/g9biYmJ9n5NoA5bE4LcQIlLO06yYOFmXKlNwSvZQkbDYRNzqYt0xijGBO\n/ojrVoa9e5vu+jpSVtZt+OhhHTmyH5/vOm+8cYpyuY5gsB2324eUkmIxQ6k0SjRa5Itf3PeRmKmk\n3J9K6B9CNpvl7Rtv07K/5YFJSTd0mnc08/rF1+np7tnwy3PbtuEuFwqGaSAteVtiL+VKXH0tj24e\nIphwkZ4rk8lIQqFWhNAoFrMY7h5ctRjXr1+htxcikRaq1Qhvv93PiRP6HfcRfL4g4+N+ZmdnaWq6\ne6L8sK4OXEWLaZgpg4GxMezpWXx5P62uNpxcmR7Ti2v5fQtISdYokpKj+J06dGEQ1BvJWhW6zTmm\n5r9PR8cf3vEa5XIBn6+4qedt79rVy/bt3YyPT9DfP0A+X0HTBB0dPnbv3kZDQ8OmuGpUPrwHJnQh\nRCvwZ0AD4AD/l5Tyj+9y3B8DzwEF4L+UUp5f5Vg3nYHBAYyYseJxYNNlIkOSoeEh9uze8+ATWcvt\nMQAAEFtJREFU1pBhGHCXUQK3x00sGKOYKeKP+JfuD5xNoxuH8PhDpBfSZNLQ3tKIEEvJsFarYJWh\nMbADrzfK0NDr7N1bh8vlwe/fzoULA3zsY5E7PvTeXcSyFgm9VqtxcegiDb0NXHn9l3Tnc0QwMGjA\ng8QjK5ia7+bxEhufgIKxwHzhLUJGPZbmQzOjzFZG2OVLUi6k73idVGqEp56699XZZmEYBl1dnXR1\ndW5oHMraWslvoQX8npRyD/A48NtCiNumOQghngO2SSm3A78F/LtVj3STkVLyzsA71DXVPdR50YYo\nFwYurFFUK1dXV4dW1rBq1h3PdXd1U5ovAZBfyFPMxPEEwgBkUjkC3ibELQnMshwoQsDfiGmGsKwm\nMpmlIk9eb4Bi0cvi4uIdryOETq22NmPP6XQa27QRmkCzajQYBpMpDbcWw+U4NBoONaeIlA6VWg5Z\nzeKVNZpdbkKiTEJCk1YjWEwyXRhmd52f7NA5bq0Wmsst4HZPsG1b55q0QVEe1gMTupRy5t3etpQy\nD/QDLe877PMs9eKRUp4BwkKIhlWOdVOpVqtUnSqm6+HGTr1+L9lClo0uI+x2u9nTuYfUbOqO52IN\nMUIiRHYuS3KkhOFeerur1SqljEMk+l6PWkpJJZMlaLSg60vT3bzeLqanR2620e1OMDZ25+Ibx6ng\ndq/N2LNlWaDB3NQ0XdEYWcehWF2aleIWgpgb3KJCsZrE41QJaCYmOoZm4NccCnYWA4ewyLMrFMAs\nLFLLzGNZNQAWF2cpFt/ixRcPb/jwmaK866GuE4UQncBB4Mz7nmoBxm/5epI7k76yyezu3Y2VtKiU\nbl9RqOs6Rx47grloMjNQwO0NIpHkUllC3sTNKXCObZGdT9Lo6SYcDNxM4KYZolx2sO2llaVut59c\n7vbXcBwHmKKhYW0+9w3DAAdSY6O019ejx+PkymU0oSElBH0udFEhqlVwaVUsp4jtVLGcGqbjIJnH\n1MZpimqEPV5aEGTH+5maGmB8/Jf4/Zf50peOkkhsrgVFyqNtxQldCBEAvg387nJP/ZFmmiYuzUWt\nWnuo88rFMkFfcFPchIpGo3z62KeZvTZLMX/7HGuv38uJx0/gtwPkJvLMDMwQFCE8Lj/lYoHsfIri\ndJ4Wby+9244TDruoVN4bYxbCwHGs5cdiOYG/J52epbPTRyi0skUvDyscDqPXdCr5Am7ToKm9HVed\nj7xdoYKkYks8GsR9boIu8JsWplbEsfM0+aCjMcDeHW3EY25K9gwFsojyBLb9d7z00ja+9KWPb9oF\nY8qja0WzXIQQBkvJ/D9KKb97l0MmgVsnYLcuf+8OX//6128+PnnyJCdPnlxhqJuLpmns27aP8zPn\naWxf+XSvxdlFntz+5BpG9nC6u7p5yXiJn53+GSkzRbA+iD/oRwiBbdtEIyFEuYmYrw6X10Xf+Ag+\nGaI1tINQKHGzPGtTUxNXr45hmgE0zQBq6PrSc7VaBY/nvaGVarVMPn+Zz3527aZvulwu9nXv451L\nr0JdHF3TOXi4k1/kHQqLJsMLeVp1iQ3oAjA0dLeJJjS2+eMMV6skSxUGshkCmkEqsB9vop2hSwY/\n9F5k79459u7tWbMPJOXRdurUKU6dOvXQ561oCzohxJ8BSSnl793j+eeB35ZSviCEOAH871LKE3c5\nbkttQZfJZPjzH/05LQcePG0RwKpZzF2e42svfW3Tjbu+u5HwxesXSWaS2LZNwBegltHIZPbQ1rYL\ngLffvkI220QgcOc0vfn5SUZGUhhGBL9/hN7ejwGQSg1x4ICX5uYmisUcyeRbPPtsOzt29KxpmzKZ\nDH/0v/z3HGjzEPL7WFxM87enRsnke6hem+Ext46Ohls38bhcVGqSRM1DneHidLZGwNdOxhrgSJ1F\nui5KbO+zDJccep/5GPn8HJo2wIsvHqK+/uHK1CrKw1rpFnQrmbb4JPAPgItCiD5AAn8AdABSSvkN\nKeUPhRDPCyFusDRt8Tc/XPgfDeFwmEPdhzh37RytO1rvm9Rt22by2iRP7Xpq0yVzWBo3b29vv6M8\nwcLCAn/xF+eRcidCCDo763nzzdm7JvREogVdN7hy5W+JRCLk8zNomhvbnsQwOhgfP00gkOHFF3fR\n0bH2ZRDC4TAvfOor/OAv/4RgpAoeh2374PrVOWZjbuYKNh1eE8uRzOULxCwvDQEPfekKutFC1p6j\n0Z9Bi7VQjbcS9kXRK4tomkZDQze5XISXX36LL3/5uFphqWwKD0zoUspfAQ+caC2l/KerEtFHzPHH\njlN5vcKl/kvUtdfhD9652UMunWNhfIHHOh7jwL4DGxDlBxeLxejqcjExMUhjYw+xWIxYbJp0eppI\n5M754y6X5PDhBnbt2snExCBjYxfYvTtAW5vB7t1tNDcfW9c52wcOHOA739TJVMq4610EYx527sqT\nmy0ybicoZsvUOzpxDCLSYTybZbzsxwyM0xPK0tTQyHS0gZ7Ox5aGoaS8WWc8GIxRLu/mrbf6+dSn\nHl+3NinKvaxoyGXVXmyLDbm8S0rJwI0Bzl05x4K1gB7Q0XQN27Jxcg71vnqO7D5CV1fXRof6gZTL\nZV5++TXS6Q4aG3uoVqucPXuVTCZKJNJ8c9ZLNjuJEJc4ceIEmqYzN/cOR454OXHi0IbdBP7uj7/L\ntdRVjIsDNOo6w5l5crUys5OzlCdLVApxtHKMmGPgkzUGFpM0xOvY1Z7ADtbhbdhOW/MuTN2kWKlw\nzXE4+LGP3VZFcmrqp/zGbzxxR90aRVktKx1yUQl9FUkpmZ2dJbWQolqr4na5SdQlqKur2xSzWj6M\ncrnML395lsHBMqbZSSBQx8jIDKOjKfJ5B01bIByusXPnToTIEgrlOHq0m97ebRvW9oWFBf7ip39B\n24E2JgfHKJ25SI/LRTwUpFgoUOzrpzMUYCZfoj+5yJVkhtFSgsMdJ2nv3kMi0oTLeK+U7HAyiXv/\nfppbW297ncnJfp56Cvbu3bXeTVQeESqhK2ticXGRa9dGGBxMUqlYgI1pVolEQvj9Ibxek46Ohg3Z\nxOL9Xn/zda7krtDQujTXPbOQYe76CNbwFPVSkro2TKJcpex1o8cj4PVwbaybQK2efTv2Lc1lX1Yo\nl7laqbD/5Mk7CnElkxP09s7x5JOH17V9yqNj1W6KKsqtotEoJ05EOXHHHKbNZ2ZhhmAiePPrcCxM\n+MQByvt3kEvnMA/v4srpCxx2GXQ2JphMLt3wdDSHWq12M6EXymWuFwp0HT9+16qKH/WrL2XrUAld\n2bKsmnXXZOvxefD4PCSaEzS0NjD0d+dIzyTx1SwcWQARQ0pJvlRitlAg7XLRfeLEPSsqVip5AgG1\ny4+y8VRCV7Ysr9tLtprF67/3NFFfwMeuzzzB4vwi01cGGbo8iJMPUAln8MfjNBw6REcicdvwy62k\nlDjOOJ2dR9eqGYqyYiqhK1tWb2cvP7/+c0LR+6/m1DSNeEOceEOcmj/E9VfjHH3u+RVtWrG4OENH\nh4dwOLxaYSvKB7a5izgryofQ2dGJXtDvWiL4Xvw+F3t36uRyyQceWyzmKJcvcuzYzgceqyjrQSV0\nZctyu90c6jnE1ODUisoVp1Np4lqcr/3Gc+j6RaanB26Wy72V4zikUpOk02/wwgt7qKt7uJr4irJW\n1LRFZUtzHIefv/pzrmWu0bytGcO8x+bXsynknOTzn/g8sViMYrHI+fNXuXx5DstqwjBCCCGwrCJS\nTtDTE+Tw4V7i8fg6t0h5FKl56IqyzHEczvadpe9GH7bfJlQXWtoOUEpy6RzVVJWWUAsnHz95x1h4\npVJhfHyCbLaI40j8fjdtbS1qVaiyrlRCV5T3KZfLjI6Ncn3kOqVKCcM0aIw1srNnp6ptrmxqKqEr\niqJsEStN6OqmqKIoyhahErqiKMoWoRK6oijKFqESuqIoyhahErqiKMoWoRK6oijKFqESuqIoyhah\nErqiKMoWoRK6oijKFqESuqIoyhahErqiKMoWoRK6oijKFqESuqIoyhahErqiKMoWoRK6oijKFvHA\nhC6E+L+FELNCiAv3eP4ZIURaCHFu+d8/X/0wFUVRlAdZSQ/9m8BnHnDMq1LKw8v//qdViOsj6dSp\nUxsdwppS7fvo2sptg63fvpV6YEKXUr4GLD7gsAfupPEo2Oq/VKp9H11buW2w9du3Uqs1hv64EOK8\nEOIHQojdq/QzFUVRlIdgrMLPOAu0SymLQojngL8Belfh5yqKoigPYUWbRAshOoDvSSn3r+DYYeCI\nlHLhLs+pHaIVRVE+gJVsEr3SHrrgHuPkQogGKeXs8uNjLH1I3JHMVxqQoiiK8sE8MKELIb4FnATi\nQogx4A8BFyCllN8AviyE+CdADSgBX127cBVFUZR7WdGQi6IoirL5rctKUSGEWwhxRgjRJ4S4KIT4\nw/V43fUkhNCWF1a9vNGxrDYhxIgQ4p3l9+/NjY5ntQkhwkKI/yyE6BdCXBZCHN/omFaLEKJ3+X07\nt/x/RgjxOxsd12oSQvwzIcQlIcQFIcSfCyFcGx3TahFC/O5yzry4kvdt3XroQgjf8kwYHfgV8DtS\nyi2THIQQ/ww4AoSklC9tdDyrSQgxxNKN7getR/hIEkL8v8AvpZTfFEIYgE9Kmd3gsFadEEIDJoDj\nUsrxjY5nNQghmoHXgJ1SyqoQ4i+BH0gp/2yDQ/vQhBB7gP8EHAUs4EfAfyOlHLrXOetWy0VKWVx+\n6GZp7H7LjPUIIVqB54H/sNGxrBHBFq37I4QIAU9LKb8JIKW0tmIyX/YsMLhVkvktdMD/7ocxMLXB\n8ayWXcAZKWVFSmkDrwJfut8J6/ZHujwk0QfMAD+RUr61Xq+9Dv434PfZQh9S7yOBnwgh3hJC/OON\nDmaVdQFJIcQ3l4clviGE8G50UGvkqyz1+LYMKeUU8K+AMWASSEspf7qxUa2aS8DTQoioEMLHUqex\n7X4nrGcP3ZFSHgJageNbZUWpEOIFYFZKeZ77TO/8iHtSSnmYpV+o3xZCPLXRAa0iAzgM/JvlNhaB\n/2FjQ1p9QggTeAn4zxsdy2oSQkSAzwMdQDMQEEL8/Y2NanVIKa8C/yvwE+CHQB9g3++cdb+MXr6c\n/QXw2fV+7TXyJPDS8jjzfwI+LoT4yI/f3UpKOb38/zzwHeDYxka0qiaAcSnl28tff5ulBL/VPAec\nXX4Pt5JngSEp5cLysMRfA09scEyrRkr5TSnlY1LKk0AauH6/49drlkudECK8/NgLfAq4uh6vvdak\nlH8gpWyXUnYD/wXwcynl1zY6rtUihPAJIQLLj/3Ap1m6FNwSlhfFjQsh3i1X8UngygaGtFZ+nS02\n3LJsDDghhPAIIQRL71//Bse0aoQQieX/24EvAt+63/GrUctlJZqAP12+y64Bfyml/OE6vbby4TQA\n31ku22AAfy6lfGWDY1ptvwP8+fKwxBDwmxscz6paHn99FvivNzqW1SalfFMI8W2WhiNqy/9/Y2Oj\nWlV/JYSIsdS2//ZBN+zVwiJFUZQtYktORVMURXkUqYSuKIqyRaiEriiKskWohK4oirJFqISuKIqy\nRaiErijK/99OHcgAAAAADPK3vsdXEDEhdIAJoQNMBBlvSltZVsZjAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFkCAYAAACw3EhvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3VmQHNee3/fvyaX2tauru6v3bnRjIxYS4AKud+NdZu4o\n9OAJx1Ca8EghzcgTVlhx/WDrwX5zyHJMSKMXOfzgsOWIse/YDyNLI41mOCSHy70kCGIhQKzd6H2p\n6tr3Lasy/dAgSBAgiMba3fh/IvBQWSczTyaqq3558pyTynEchBBCCCG0J10BIYQQQmwPEgqEEEII\nAUgoEEIIIcQNEgqEEEIIAUgoEEIIIcQNEgqEEEIIAUgoEEIIIcQNEgqEEEIIAUgoEEIIIcQNEgqE\nEEIIATxgKFBK/VOllK2U+pd3KfO9G2W+/q+rlOp7kH0LIYQQ4uEy7ndFpdQLwB8A5++huAPsBSo3\nFzhO+n73LYQQQoiH775aCpRSAeBPgH8IFO9xtYzjOOkv/93PfoUQQgjx6Nzv7YN/Dfy54zjv3WN5\nBXyulFpXSr2tlHrlPvcrhBBCiEdky7cPlFK/AzwLPH+PqySBfwScBtzA7wPvK6VedBzn82/ZRwz4\nKbAINLdaRyGEEOIp5gHGgb9yHCe3lRW3FAqUUsPAvwLedBzHupd1HMeZAWa+tuikUmoP8Avg975l\ntZ8C/9dW6iaEEEKIW/xd4P/eygpbbSk4DsSBs0opdWOZDryhlPrHgNtxHOcetnMKePUu7y8C/Mmf\n/AkHDhzYYhWfXr/4xS/44z/+4yddjR1HztvWyTm7P3Letk7O2dZduXKF3/3d34Ubv6VbsdVQ8A5w\n+BvL/g1wBfjn9xgIYPP2Q/Iu7zcBDhw4wLFjx7ZYxadXOByW83Uf5LxtnZyz+yPnbevknD2QLd9+\n31IocBynBlz++jKlVA3IOY5z5cbrfwYMOY7zezde/xNgAbjE5n2O3wd+APx4q5UVQgghxKNz3/MU\nfM03WwcSwMjXXruAfwEMAnXgAvAjx3E+fAj7FkIIIcRD8sChwHGcH37j9d//xus/Av7oQfcjhBBC\niEdLnn2wi7z11ltPugo7kpy3rZNzdn/kvG2dnLPHS91738DHRyl1DDhz5swZ6WAihBBCbMHZs2c5\nfvw4wHHHcc5uZV1pKRBCCCEEIKFACCGEEDdIKBBCCCEEIKFACCGEEDdIKBBCCCEEIKFACCGEEDdI\nKBBCCCEEIKFACCGEEDdIKBBCCCEEIKFACCGEEDdIKBBCCCEEIKFACCGEEDdIKBBCCCEEAMaTroAQ\nj1M+n2dtbY1MLkOmkKFrd/G6vQz0DtAb62V0dBS32/2kqymEEE+EhALxVCgWi5w5d4br69epOBUM\nv4Ev4ENpilK7xMLqAsxA/PM4R/cd5eDBgxiG/HkIIZ4u8q0ndr3r16/z67O/Jt1Jk5hMkIgmUErd\nVq5jdcgkM7x97m2W15Z549U3CIVCT6DGQgjxZEgoELvatWvXeO/0e9ADe8f3omnf3o3GMA0Sowl6\n4j1cuXyF5vtNfvL9n0gwEEI8NaSjodi1MpkMH539CK1XY3hy+K6B4OvcXjeThyeZr8zz8acf0+12\nH3FNhRBie5CWArEr2bbNp6c/pWyUmR6f/s7yVscim81SyJfIF2q0ml3arTZXzv1birkyr7xygqGh\nIXRdfwy1F0KIJ0NCgdiV1tbWmMvMMXJ45K7lbMdmfW2dubkkhSJABI87gWG4MFwODXOR//jOLOvr\nLkZHL/P88/sZGxu7Y58EIYTY6SQUiF1pYWmBrreLx+e57b1quUq1VKVYKDI3u0gq1cYbGCLeP0oo\nEkN97TaDbypEtruK3/8M6+t1/vzPv+DYsRQvvfS8jE4QQuw68q0mdh3HcVjdWCUYDd6yPLeRY2Vh\nhVQuRc2qsZ5PUSg7BHx9VGvLFK4nCXpixOMjRPsTaJqO6XJjm11arQYTE0cplQb55JPTdDqf8vrr\nL99zPwUhhNgJJBSIXadWq1FtVfEH/MDmUMO5K3PMrczR9rQJj4Wp1erYnRhjoyPougmA1WxRyeUo\nrmzQmxtheHI/Hp8fzaNTbRQACIfj6PoJzpz5mHj8KgcPHnxixymEEA+bXOaIXafT6dB1uhimgdW2\nuHjmIpeWLuEecTO4fxDbsNnYqOMP9N0MBACmx014qI/gnl4y3SXmrp2lUa2g6zpWp3WzXCAQxe/f\nx6lT85RKpSdxiEII8UhIS4HYdWq1Grl0jpyVY3VplZXcCn17+7C7Nl2rSy5fwLJ8hIKBO65velxE\nJwcpLiZZvH6BoD+G6XPdUiaR2MO1a0ssLCzw7LPPPo7Deuhs2yadTpPP58kX8rSsFoZmEAlHiEQi\nJBIJXC7Xd29ICLFrSCgQu0Ymk+HS5UtcW73GlbUrFFIFCvUCZtSklWuhJTVcuotipUV4cN9dt6Vp\nGpGxAfKzSZorNZ577ie3vK+UIhQa4/Llaxw+fHhHDVV0HIeFhQUuXr3Icm6ZlmqhPArDNLBtm+5q\nF83S6Av0cWjqEAcOHJBwcBe2bVMsFikWi7Ramy1KXq+XcDhMOByWfidiR5FQIHY827b54osvOHX5\nFCVVom+sj/2u/Xxw/gOC00GiiSgA3U6X/Gqe9EqObjuINqLji3z7bIWaruOJ+ymubNzxiz0cjlMo\nXKFcLhONRh/Z8T1MzWaTk5+e5PzSeVRY0X+wH1/Ad1s5q21tTvn8+dvMr8zz2kuvEY/Hn0CNt692\nu83c3BxXriyzsdGmXteAzdEuSjXweh2Ghjzs3z/G5OSkjFYRO4J8SsWOZts2n5z8hE9nPyU8Embf\n0GYLQLaYpd6oEw9+9UOmGzquHhee8TDNSpXk4nUGRibxxyLfvn3VxfCYtNut297zeoOsrysqlcqO\nCAWNRoN3P3iXy5nLDO8bJhgJfmvZjtXB5XbhiXo4ef0kcwtz/MYPf4N9+/bJjxuQSqX4+OPzLCw4\neDwjxGLDDA4Gb4ZH27ap10ssLq5w/fp19u5d5sSJZ+nt7X3CNRfi7uSvW+xoly5d4tPZT+nf108o\n+tVVv6ZreLweGvUGnsBXcxU4joPSdQIjUWrJEumVRQbde3Hf4Wq5a1lY1RZ9Q+PkK8nb3tc0DcfR\n6HQ6j+bgHiLHcTj56UkuZy4zeWQSt+f2x0M7jkNmPcP6UoaN1Q7Nuo5te4EEV1NJLl74f/j+q89y\n7NgUU1NT+Hy3n7Onwfz8PO+9d4lKZYCJiSOY5u3nUtM0AoEogUCUVmuKa9fOk8ud5Ec/epbh4eEn\nUGsh7o2EArFjZbNZPr34KaHh0C2BAKBWr5EYSlC0itQqNfzBzeGJmzMROgD4BkJUGnlyK2sM7Ntz\nyy0Cx7EpZtLE3MP0941R2chiWW1M86t767Zto1R3R1w5z83NcWH5AiMHRu4YCBq1BrNfLLA0Y2Pb\nAwQjA4SiYXR989gGRrosX53nwhcmmUyKS5dWOXHiABMTE4/7UJ6oZDLJe+9dotXaw9TUvQ1Hdbt9\nTE+fYHHxPO+++zm/9VteYrHYI66pEPdHesCIHevy1csUKdI31HdzWbfbpVKtkM6k0XSNWChGu9Sm\nWq4CYJommupiOzZKKfxDYarNPI1C+eY27G6HfCpJyOlhJLEf0+Wh41h0u9Yt+6/Xy3i9bPunKNq2\nzYUrF9AiGoHQ7SMuquUqZ391jeuX/IR6XiAx+gyBUOxmIADQdZ2+sUEa6PT3P08uN8pf/MVFLly4\n8DgP5Ylqt9t88skFKpUBRke3Nj+FUorx8aNkMlE+/fTzHdG6JJ5O2/8SR4g7qFarzK7M0ju0eY+2\nUCiQ3EiSzCZpdVrMLc5RNauEekNYdYtSsUTWyeIxPHSW8tQbNUzDTdelU6u3ycyv4AkHaDVqNAoV\nIsYAYyOH8HqD1CtlFLc/66BUShOJ6Ns+FCSTSVYLqyQOJ257r9Vscf6T66TX+hkcPYSmf/tXgj/g\np+AUyGZzTE8fIpMJ8cEH5/F6vUxPf/dDp3a669evs7DgMDFx5L7WV0oxNvYs1669z759S+zZs+ch\n11CIByehQOxI2WyWUrvEUHCIK1evsLixSEtv4Q/7CfqDJLQEa5U1/HE/XadLd76Ga7VItAtDBoCJ\n1xuiY9tUyg02yjlWMwW8g6OMjx9lYGAS48bERu1mA7fuw+Xy3ty/bdtUKku8/PLQth9yls1maevt\nOz4HYu7yAqmVIINjdw8EX/KEPGSLWaaZJh4fpdWq88kn1+jv79/24ehB2LbN5cvLeDwjd+xDcK88\nHj9KJbh2bZHJyUl5sJbYdiQUiB2pVCpR79T5/OLnJGtJehI99Aa/6tnt8/twsg6V1TKe63le6hj0\nTA3QrtWxmzatho3SNHTTTazHy7DVxduNUChqtEst6ANuTD3QqFXp849j2106nTaappNKzdPX12Jy\ncvLJnIAtyBVymH7ztuWlfImlay2ivYduuVVwN26Pm2quimVZmKbJ4OBeZmZSXLp0hZdffulhV33b\nKBQKpNMWvb13f+rmvejtHWFtbY1arUYgcOcJtIR4UiQUiB2pVCoxuzKLPqwzODmIbtw6eVAgHKC1\n1qQ3W+JA1Edk4EZP+YCHWrmGYVrYlodQaABNM2i0SowMTmAbJjMLs6xbFoMHD1MrF9m4toARiJDd\n+EtsG1qtCt3uAr/5m/tpNpsEAoFtfcXXaDUwzNv/1FMraRq1HmL9997pzTAMGk6DTqez2T9D04jF\nJrly5TxHjtTw+/0Ps+rbRqlUotnU8Xq/fRjnvfL7I2Szm9uUUCC2GwkFYsdxHIerM1fJNrIcHT16\nWyAAqGaqxNfrJLpN3FE3rVoT3dQxTAN/yE+5Wwa7Rr2Ww+v5ao4Bv8fDgXg/Z+ZnOJPcoF71o1cn\nSew5jlIxWq0K5fIcQ0PPMjfnI50+yfR0iBdeeJZwOPw4T8M90zQNx3ZuWeY4DhurNXyBsS1ty3Ec\nFOqWENTTM8T8/BdkMpldGwqazSaO43ko4c8wTLpdk0aj8RBqJsTDJaFA7Djr6+ss55YJh8K3BYJ6\ntU5mLcPqR5eYbtWBFhvJDQyXgeMoDN0gGPTj9Xtpdpt4tDa18gZ200Tpm1/4xWqVcg7yJQN3734O\n7f85fn+YfH4d0yzxwgvT7Nkzia7rVCp5zp37gvX1j/je9w4zNra1H9nHIRaOcblw+ZZljVqDelXh\n8X3VD8BqWzTrDVqtNjgOmqbj8rjw+Dw3h122mi08pueWaY91XcdxghSLxcdzQLvEdm5dEk8vCQVi\nx7k+dx09qhMoB7CaFqbHpNvpkk6mSW4kyW3kGGnVSUxGyOYNMht56LRxodHtdFnvFDF8HrxBk0RE\nx2No1Kw668lLFOqKpbwfTe0n3lRU6zr1eg7LWqG/32R6es8tY8yDwR727n2dlZXLvP32BX76U8Xo\n6OgTPDu3i0ajcHVzuOaXz2hot9pYbY1g2E21XCWXzlEoFWh1W9jK3hysbIOOjttw0xuN0dMXo1lv\nkggmbutcqZSPer35BI7u8fB4PEAD27YfuGOpZbXRdevGNoXYXiQUiB2l1Woxtz7H2PQYjSsNSukS\nkcEIy9eX2Shv4OnxEEgqfI4iNV8gWLc4aumoTgfT7KJ7DNpdh0KxzNp6lwtagVAgzmR0glrT5tpq\niUotSsDO4TH8ON0UfX0FhoaGicfjd5zFT9M0xsYOsbBg89FHX/C3/3bPtrpXPDg4SNQVJZ/OE09s\nTvuslMLudllfWiNTKtDRO3h6PIT9YTT9qx+9bqdLs9pkObdMKr2Bp+PmhddeeFKH8sREIhF8Ppt6\nvUwg8O3TYt+LarVAILC5TSG2mweKvEqpf6qUspVS//I7yn1fKXVGKdVUSs0opX7vQfYrnl7FYpGa\nVSMUDTE2OkYz02Tx2iKpSorwSBhd12leyxJK13imY/N8xMPe/hCj0SAhNLRqDbNWpdewORIw2Fdv\noa3kmM+tM7ORotoaptc3gt/fQ0frsL52nb/46D/xzifv8O7H7/I3v/4bPjv9GbOzM6TTaYrFAu12\nG4DR0WdYX/dx9uz2mtDH7/dzcOIguZUc3U4X2OwbkFpfYim1gNlr0jPagy/kuyUQwObzIvwRPz3j\nMSqqQqFaJJvL0u12bynnODX8fi+7VSQSYWDATS63+sDbyudXGRkJ7Nr+F2Jnu++WAqXUC8AfAOe/\no9w48B+A/wX4O8CbwP+mlFp3HOev73f/4ulUr9dp223cXjeD44O4z7m5tHCJoRNDKKUonEsxma7x\n/EAAv9vAarWpNZt0uh06WoeuA3ZXgVLYVptIp0Wg1WV9LcOia5iByD4M3cQ2uwTcPUQqBiu+LvOt\neVLraXTbB5YGTYOIK85Af4Jg0E1vr4+hoT7i8X1cu3aGo0dL26rj4eFDh1lYW2D5+jKj06PMX5un\n0t3AG9uLN/jdP+ategu/x8/IkRGup2dptUr0xsKUq1nqrTIbG2cYHTuCy+UikUjsuqtgTdM4cGCU\nhYUF2u0pXK77a/qv1ytAkr17n3m4FRTiIbmvUKCUCgB/AvxD4H/4juJ/CMw7jvPf3nh9TSn1GvAL\nQEKB2BLHcW520HIcB3QIGkFqyRqO1WVgrcyUz8RraNQqNVpWC2WA5tZwWgrT58PQTVr1Bk6ti8vv\nxR/yopUckqUWefcaiaE9uD0+UOBpt8ExKBQUNd3A7wmQ6B3C7/VRzeXJlloYxjDLyxYrK4sMDbnR\ndYfV1dVtFQr8fj+vvfAaf/mrv+T0+6dJ1pKMHouSvJYHBu+6brPRpF6oM9I7jMd0WKpc5vryOyRG\nBwjHwjTsGiqeZd6aZ+mzJUJGiOnBaZ49+uyOeHrkvdqzZw9TUytcv36eqakXt9xR0LZtVlY+5/Bh\n/7bskCoE3P/tg38N/LnjOO/dQ9kTwDvfWPZXwMv3uW/xFHO73WiOhtW2yKxnaLvaPPPyM2hZje7J\nVYa9BoauUa1UaVlNDK+B6TaxOha2raPrBu1KE6vYwnR5cMW8eHv8WI7DoOHC1V6l2a2BArvToVqp\n0ap7cbsnMbwxTJ+HQqWIDfQMDtLy1kiXFgmHB4hGD7G8bHD1aomrV68/6VN1m5GREd449gYb8xsU\n20XCiRBuX5ZG5c6jBmzbppgv0iw0GYoO0GlmmF3+iGa0gDnph7CfvtFxDB8ceWGKg8cOsvfFvXjG\nPJxJnuHf/fW/49q1a4/5KB8d0zQ5ceIokUiaxcUvNkPpPbJtm4WFcwwMlHnxxWe3/SyYj5Nt2xSL\nRVZXV1laWmJtbY1KpbKl8yseni23FCilfgd4Fnj+HlcZADa+sWwDCCml3I7j3P6geiG+RTgcxu/y\nbw49TGfQAhrh/jC9sSghlcbb7JDLVfG5OgR6NpvFrbZFu95Fs3WsUotu08L0uzFDHuxOB7tj07QV\nsUCEilNjPj3LsNpHu96l0vHgDQ7i9gVpNCp0Nrvkk83nGEwMEon3k0+ts5a6yp7x4yQSB5idTfHe\neyf5/vdf23ZPw1NKMbJnhEQ4QaqUQnnSZFcu0ztyFMPlwnEcOu0OrWYLu2UTcgcZGBqglJ1jozGL\nfzSGJxDAaluUs2VWVmfp7W0xOjJ1c/vR3iiRWITkUpK3T72NZVkcOnToCR/5w9HX18ebbx7l3XfP\nMztbY2zsWdzuu99+aTSqLC9vBoI33zy+q1pPHkSpVGJ+fp4rC1coN8o0rAY2NrrS8Zk+eoO97N+z\nn4mJCbze3dtfZbvZUihQSg0D/wp403Ec67vKP6hf/OIXtzXBvvXWW7z11luPetdim/L7/SQiCWaT\nsxSLRTxRD1bLwpWtsm//EHalxsJ8GqcFTsmmg0273caxNHTT2LxCC4Mr6KFrdbA7kKk1SDo2qpbC\nNMFXu0ypkqNBkIanF8dKYHe9mKabZqNKLBamVq5Rr9UIBkNE4v1k19aI5gfp7R2mr2+CfP48J09+\nzk9/+r1t9Wjl1fVVQv0hJg5OUMgXWOlZ4bPKZbIzVwnGJ9F1A0MziPviRPoihEIh0quzbDRmCY33\nY94YRme6TKrNHAEzw759z942KkMpxeD4IGkzzUfnPyISiTA8PPwkDvmhGx0d5bd+y8unn55nZuY9\ndH2I3t5h/P7IzemiOx2LarVALreKUkkOH/bx4ouvSCBgc2js1atX+fSLT8laWcJ9YcLDYQYCA+i6\nTsfqUK/WSWaTzH82z9DVIU48d4Lx8XGZ2+EOfvnLX/LLX/7ylmWlUum+t6e20kSjlPrbwJ8BXbj5\n2DidzQfUdwG3840NKqU+AM44jvPffG3Z3wP+2HGcO/6FKKWOAWfOnDnDsWPH7v1oxFNhdnaWP3v/\nz1gqLuGecOPYDs0PLvNiPMjGWpJCocBApsFgyAU2lMs1lO5BN00atTKYoJk6pWqTVMHGaLbwVDUi\nzgDhQJCFVp266qVFmA2vm2wgSNoTo9MzRUeZxOMBOu0OfuVjcHAIhaKUzRBoR9m35wSFwnV8visM\nDZn8/OdT7N2790mfMmCzmfZP/+2fUgvXGBgZuLm8Wq5y+oPLJFci9PTtJRyJ32zerpZyXJv/AH3Q\nhS+yGdAdu0spn6JanuPZvcP87Mc/u+t+5y7PMawP87d++rdwu+//YULbTafTYWFhgWvXllhfb1Cr\ngW27AAddt/D7YWTEz96944yNjd2cI+JpZlkWv/r1rzi3dI7gUJD+4f67/tB3O11W5lZQJcUrz7zC\nc889J8HgHpw9e5bjx48DHHcc5+xW1t3qJcw7wOFvLPs3wBXgn38zENzwCfAb31j2kxvLhdiy8fFx\n9sT3cObqGYYnh2k1Wni7Dt2WRaPdIJQIUW50ibS6BLwGytDQDRO7a282TxoGG+UmxWKHRKPLhM+g\nY9u06joBw02w1aABYHiIR0eJmyaJZo7F1BlWfQmsyDRut4dmrUW308UwDHzBENVUgUajTLtdYmys\nH133cfXqElNTU9viHrJlWTStJm7PrT/MgVCAEz86wvWLCyxc+4JUpZ9gJIHXFyKbXsDyNQiEYljt\nBo1qGaudJ9TToG84RND/3c8CGJ0aZeHsAktLS9smID0MhmEwPT3N1NQU1WqVYrFIs9lEKYXX6yUc\nDm+r+SqeNMdx+Pjkx5xeOs3IMyP4g18NybQd++ZwWcMwbv7w64bO+L5xchs5Prz4IS6Xa9fcitqu\nthQKHMepAbfMl6qUqgE5x3Gu3Hj9z4Ahx3G+nIvgfwX+K6XU/wz878CPgN8GfvMB6y6eUqZp8upL\nr/KXH/4lGysbhMIhdBxarRa2ZmP6XHQGg2zM59FbHRw2m7OdbhdwyNUtioUWBxwXCY+D7tKpNbs0\naeE4Nk7Xpq4ram6DkNsNKGK+PrxWDa0wSz6g4Rs5QttpYVltDMPAdLvpqDb1ehnbzhIKTRKJ9LG2\ntkSxWKSnp+cJn7W78/g8PPPCfvpHsqwtpEmvrbO+3GF++QragM7GehZNtXB7uyTGAsQH+2nWm6ju\nd1+1mS4TM2IyMzezq0LBl5RSBINBgsEHf1jSbjY3N8f5xfMM7R/CH/TTarVIZ9LkciUKhQadzuY1\npculEevxEeuNEo/HMXSDWH8My7I4+cVJBgYG6O3t/Y69ifv1MG52frN1IAHcfL6o4ziLSqmfA38M\n/NfAKvAPHMf55ogEIe5ZIpHgjeNv8BfX/oJsK4thO7RbbTRj84rcG/VSGQiyvlIk0OlimA4ODnXL\nIlPpcsAxmfC6aLW6KA1cmsI0m7RaLeodm2rAh+Z14Tg2Sm02+/pMPxOuICq/gNUziI0X++sPGjKg\nUFgkkegQj49imm6SSY1SqbQtQoHL5cJjeqg1a3d8XylFPBEnnojTarS4dPoSq4UsXp/CtDu4HIW7\nrcNajXQmT7FtsWfowM3HKN9NpDfCxvIGjUZDOo09hdrtNqcunELv0fEFfSwsLjA/l6Fc0dH1KB53\nHMN0Aw6NRpO5uSrX51aJRteYnh4kMZCgf6ifmewMZ8+f5Sc/+smTPqRd64FDgeM4P/zG679/hzIf\nAscfdF9CfN2Lx19kNjdLnjzp4gphvY0K3PiRVorAUJCyY5O/nqUvV8GtbDZqXQYsg8mgF7o2AE53\nc45/w2yyUS2QMwNo0Qh0v5wX4at9+kwvE7S4lpmB0KFb3rO7bRqtWcbGnrvZI91xfNTr9cd1Su5K\nKcVg7yDnsue+FttvZ7UtVuaWSZ+9TLhR4UCwH6/bhcfcbNbt2jaNVpuV9Ry2tcQFz2eM79t315EW\n/qCftc4apVJJQsFTaGVlhVQ1xcDoAOc+v8jKsoXPP0piII6mfaOvxY27Cp2uRSGf5PTpVSYniuw/\nsJfEWIL5uXlyudy2G9mzW2yfbtFCbNHY2BhTA1MUPUW05RLtmSs4dhMH52Y3WM2vU+l1UctpBBoO\ntUqNQx6NbsfG7ti02l26DYumo2OFfNS1OnUrgDLdON3NxwR/yXFsUA69/l7SlSxJVxHjRm9zx7Gp\n5OeZnIgxNvb1e57bq1PU0OAQZ5fO0rE6GObtf/6tZotrn36B5/oy05qG0RehJ3jrdLy6puHSNQZD\nEaZHx8hlM8yVS9QPHWJk+M5pwzANut0unU7nkRyX2N5WVlewXBaXr1xndVVnYOAwpnH3TqeGbhKP\nj9JoRJmZmcF2rvHMM/tJOkmSyaSEgkdEQoHYsbxeL8cPHufts28z9OwzNHMlvEaBYE/w5tz8mqYR\ndkfIR2zKZZtOvU7ba5BywNYUDUfRNUy8vSHMsJdOuky7WUOrZjC0OOprHQQ7HQvTUHjcbnqrNqlG\nAdM06XZaFDau4POscOTIzzHNzccKO46D4zS2VY/70dFR+i/0k1pJMTx56xDBbqfLzKmLhGaXODo8\nwNJGjoVq9o7bqRZr9Ph6CIeCREIh/MUCy+cvYBgGiYHEbeXtro1Salt0uBSPl+M4JHNJsvkc2VKI\nROIAhn73201f5/UG6Y3vZ27uMpHwGrpXJ5fPPcIaP93kL1TsaAcOHODAwAEK6SKrusbGWpVOuYNu\n6bg1NwFfgFisB68HOgoGQgG0Hi/aYBitL4jj8WD6vbijfmrNDqWwD++ICeYCditFt1Xe7Hzo2DiO\nhdttAgqAqHhaAAAgAElEQVSXYxCw61RLaxQzp/D4Z9k7vZ/BwambdWs2a3i9nW013bHb7eb5Q8/T\nTDepVW7tW7A8t4zr+jJHhvrxuEx8bhdOy7ltZrl6rYHZNUj0D9xsSRmIRBkAVq9epdFo3LbferWO\n1/RKZ7ynUKvVYiW5QjJt0ROb2FIg+JLH7cfnG+HaTApHcyhUCo+gpgKkpUDsYLZts7S0RKNqU5kP\ncW01jHvVj1XWCQfcaHoLw10nFNcI+ExatTQh0w2dFu1OCxoOAV+EDm0aTYtM16Y7HMHdbdNtOPgC\nXezmIlbNTdsyNwOB5afWKKAaRQxVAOVh/EAvViPGVM9x3O6vJvHJ5dbo7TW23YQ109PTHFk/wtnL\nZxk7NIbX76VerVP64jqHg3687s2WjqDPg8cxaTYtvN7NZc1Gk0axzlh8nGDg1h/44d4YxbU1lhYX\n2H/g4C3vlQtlYr6YDNF7SqVSGRwtgs8buu9tRCL9rK1ukHVlmRiceIi1E18noUDsSOVymVOnznHx\nYgWlhnjx+eMMDaZ59/0/5WryLEeDEWLBEFarTnapiOnNo1kNrEYXB0W30ybcE8fl95JNZVnJVanu\nieMN+2hnm+ho+HsHUI6iWspg2g18Lg/KyWI3WiSGg7TCQQaP76fVbOBrhBgZOnCzfp2ORa22xGuv\nDW+rGQ1h85bKa6+8RvdXXb64+AXR0Si1co1AscLA+NDNcmG/l35PiPV8EfegSa1UpVPrMNIzwsBA\n/+3bVRqJUIiFtTWak5N43JuzH9q2TTVT5dVnX5WJZ55CjUaDQraLd+TBWswUCp8vzuryGb434fvu\nFcR92V7fVkLcg0KhwF//9UmWlnyMjr6Bz7d59RGLDRDr6eH/+/f/B6fWzjKdLRMNBPEYEaobOo1c\nDtvKEAjHsE1Fs2tRLtukfF5KysB06VitNqbjxhP10Kjl0A0f/oiHcLgXQ9eplWr0Dwzj9vvZcJzN\nCYE2qjw39hOCwa+GHa6uXmZ0tMvU1NS3HcYT5Xa7+cEbP6D3i15OXz3NldNnONbt0LEsXDdaClAw\nGAgxs7hKst2ixx9ibGiMnp4eNHXnO489gSBLGykKhcLNvgWplRRxT5zx8fHHdHRiOymVSrhU9MvB\nPg/E6wuRLHTwuSUUPCoSCsSO0mw2ee+9T1leDjE9/dLNuea/NDQ0zN/5nX/Mux/9R1aTn1PvVOnp\nWIRCEULaNNWNDsqnUW13Was0KPlNgiMD9Lo8ZJNrWHaZcKwP3aPTaq9j6H1Eowk6VodatUXEGyHe\nGydVLFDRdbT1Ivv6XmZ4+KtWglRqHsNY5sSJo9t6+J1pmhw7dox4PE790hLBYpricpG2baE0wIaA\nMtmrEqRbbaYP7sXnu/vx6JqGz3ao1zaHYVbLVWqpGq8//zqh0P03HYudq1KpEPKPkK1mse3u7UMQ\nt8JWUDPw3HgGh3j4JBSIHeXcufPMz+tMTb14WyD4UjQa5Qev/gYXrg6xVpin4od6t0k1u0amUcJv\ndph6rp+QCal0lkwxTy6zDlXwKQPcZXz9fiJjAYrZErn1LuFAHwORAULBAK1Gg4W1VbShZzk68iaj\no8+gaRrdbofl5cuY5hI/+ME0o6Ojj/ns3J9AIMCeoSFePXgQzbZpNBo4joOm6/i8Xl7XNN65fJ7F\n1TSTE/2YdxjK+HUeQ6dZr1MpVli/us7z48+zf//+x3Q0YruxbZtodJBWxaacyxKJ337r6V6VMhuE\njLgMR3yEJBSIHSOfz3PhQpr+/hcwjLv3YI7FYpw49hKz12Os5lZpmU1iU2MUNBfl5Ut02jAw0EvA\nE2DA14tTd/B4PWgunXKpRLFcpO20iSo3lrtFp5GlbLVp5wJ0bRd6cC8/ePm/YGhoL61Wg1xulXJ5\nkZERi5dfPsLY2NhjOisP7svRBaZhEPT5iEQit5V58+BR/ubqF8zNJIklQvREgmjanfsHdDs2Gysb\neOp+Xph8gVdOvCJDEZ9ihmHgdhvs8R/j/Po7+MMRTNfWh+nWyiUowmhiclsN891tJBSIHWNhYZFy\n2U8icW9XGl6vj8OHDjNWHmMjvUG2kKXmGmO9s0BkJseAr5eJ/gn69vTTG4thGAatVgvLsrA6HRr1\nOq1Wi1qtRiaTIZer0mjoXC5V0UYmqNXSzMwsYpotens1XnppiL179972GOHtzu12g8tFo90m+C11\njwQC/Pzo85xfXOB8cpGZ1BrekAu/z4PLNHAch0arTa3WZHE+TfzAGD9/5efs2bNHOhc+5UKhEJo2\nz9DQy+RKq6wsXCGxZw/6dwT7r2s16hSWk4wGnmEw0ZVbUY+QhAKxYywspAkEJrb0I6OUIhwOEw6H\n2cteWq3jXBrsp/HZ/8vkxDTTk5O3lHe73TevQqLfuGK2LItfXbpEy+/n0Csv4PV6cbt7iUQixGKx\n75z/f7vy+/2Y4TDFXI6+O7QSfMllmrwwvZd9Q8MsbmywUsyRSZWoOy0U4NPdTPj6CQ3Eeenn/9m2\n7WQpHq+enh5CIahWCzyz73t0rnRIzs4SGxnCG/jueSvK+SyVZJ7J8DHCgV5isaQMbX2EJBSIHaHR\naFAsWvj93/6jdS/cbjeHnv0h761f4cPZOWLxOD33MKFOs93m88VF6uPj/NaPf8zAwMAD1WO7iU9M\nsLa4yL08wzDk83FkYoIjTGB1OrQ7HZRSeEyTTKlEo9FgaGjouzckngp+v5/p6RinTi2wb9+rPPfM\njwnMRVhcuEApmCYUi+P1B26ZPdTudqmVi5SzWbytIIcHvs/IyDMsLn7AgQMj0vr0CEkoEDtCs9nE\nsiAYfPDe/C6Xh8mDr1PTXPw6m2U0m2Wiv5/QHZrOW5bFcibDXKWCNjXFi6++Sjwef+A6bDfjExN8\nfPo0G4UC/VuYbMk0DMyvzcMwl04Tfu65O/ZLEE+v/funuHLlU7LZVXp7hzl08Hv0ZyZYTV4lvbRI\n0dnAcTmbc+x2QbUVPj3EdPQFhqb2E432s7x8icHBDhMTMnHRoyShQOwID/vKwDTdHDx4lMnJYeYu\nXmR5ZQVvs0lYKVyGQde2KXc6VA0D1dfHyMsvs3//flwu10Otx3YRi8WIHz7MhV//mu8Hg7f80N+r\npXSaXDjMiSNHHkENxU7W19fH888P8f77F/H5Qvh8Ifr6xujrG6NaLVKtFmg0KjiOja4b+HwhAoEe\nvN7N2wT5fBLbnufEiWd2XJ+dnUZCgdgRNu/fQ6NRvTlZ0YNot6tEo34mJyeZmJggnU6Tz+cpFQqU\nGw00w6AnGmUyEiGRSOzY/gJbcfTYMT5IJvlsbo6XpqbQ9XsfT54plbhYKjH25pu7siVFPLgjRw5T\nLH7C2bMfk0gcJxze/JwEAhECgW9vWUqnl6hUvuD114ekleAxkFAgdgS3200s5mF1tUAsNvhA27Jt\nG6XKhMOboxiUUvT399Pff//jp3cDr9fLiz/8IZ++8w6/mp3ludHRO95S+TrHcZhLJrnWaBB/5RUO\nHTp01/Li6WWaJm+88TJu92k+//wkudwIicTUzdaAb6pU8qRSMwSDGX74w3EOHz4kfQkeAwkFYsfY\nsyfB7Owatn3ggca9FwpJotHOruss+DD09PTw6s9+xtmTJ/noyhWGgNF4nIjff8s5b1sWyUKBxUKB\nck8Pe15/nf3798t8BOKuTNPk1VdPMDy8xNmz11hdXcGywphmGLfbh+M4NJtVOp0ifn+Ngwf9HDv2\nEn19fU+66k8NCQVixxgbG6OnZ4F0eomBgftrRrRtm0xmlpdf7pVhTd8iFArxxptvsrBnD4tXr7Ky\nvIyWTBJgsx9YC2joOioapf/11zmyd++2exKk2L6UUoyPjzM6OkoymSSTyZDJFCmXN1AKenp8xGJx\nBgYOy62oJ0BCgdgxgsEgL7wwzttvXyES6cPj8W95G+vrM/T3Vzly5NgjqOHuoWkae/bsYXJykkKh\nQLFYpFarYds2LpeLUChELBaTOejFfdM0jaGhIRm+us1IKBA7yoEDB1hby/DFFyeZmHgZ9xaelpZK\nLWDbs7zyygGZEe0eKaXo6emhp6fnuwsLIXY8uQEodhTDMPje917m0CHFwsKH5HJr37lOp2MxN3eW\nbvciP/jBHplpTwghvoW0FIgdx+v18qMfvUZf30VOnz7LtWvXCYdHCYVieL1BlFJ0Oha1WpFCIUW7\nvcrYmOLEiecYHh5+0tUXQohtS0KB2JFcLhfHjx9jbGyUubkFZmYukcs5NJvgOApdd/D7YWTEzYED\nk4yPj8uT1YQQ4jtIKBA7Wm9vL729vRw/3qFcLlOtVrFtG9M0CYfD+P1+GdsshBD3SEKB2BUMw5AO\ncUII8YCko6EQQgghAAkFQgghhLhBQoEQQgghAAkFQgghhLhBQoEQQgghAAkFQgghhLhBQoEQQggh\nAAkFQgghhLhBQoEQQgghAAkFQgghhLhBQoEQQgghAAkFQgghhLhBQoEQQgghAAkFQgghhLhBQoEQ\nQgghgC2GAqXUf6mUOq+UKt3497FS6md3Kf89pZT9jX9dpVTfg1ddCCGEEA+TscXyK8B/B8wCCvh7\nwL9XSj3rOM7lb1nHAfYClZsLHCe99aoKIYQQ4lHaUihwHOc/fmPRf6+U+kPgJeDbQgFAxnGc8lYr\nJ4QQQojH5777FCilNKXU7wBu4KO7FQU+V0qtK6XeVkq9cr/7FEIIIcSjs9XbByilDgGfAB6gDvzn\njuNc/5biSeAfAafZDA+/D7yvlHrRcZzP76/KQgghhHgUthwKgKvAUSAM/Dbwp0qp7zmOc+6bBR3H\nmQFmvrbopFJqD/AL4PfuY99CCCGEeES2HAocx+kA8zdenlNKvQj8IfAH97iJU8Cr91LwF7/4BeFw\n+JZlb731Fm+99dY97koIIYTYvX75y1/yy1/+8pZlpVLpvrenHMd5oAoppd4FFh3H+Qf3WP5toOw4\nzm/fpcwx4MyZM2c4duzYA9VPCCGEeJqcPXuW48ePAxx3HOfsVtbdUkuBUuqfAf8JWAaCwN8F3gD+\nxxvv/0/AoOM4v3fj9T8BFoBLbPZB+H3gB8CPt7JfIYQQQjx6W7190Af8n0ACKAEXgJ86jvM3N94f\nAEa+Vt4F/AtgkM1OiReAHzmO8+GDVFoIIYQQD99W5yn4h9/x/t//xus/Av7oPuolhBBCiMdMnn0g\nhBBCCEBCgRBCCCFukFAghBBCCEBCgRBCCCFukFAghBBCCEBCgRBCCCFukFAghBBCCEBCgRBCCCFu\nkFAghBBCCEBCgRBCCCFukFAghBBCCGDrD0QSYtdqt9t0Oh00TcPj8Tzp6gghxGMnoUA8tRzHIZvN\nsrS0xOrGKvlKnq7TRUMj5AsxGB9kfGycRCKBpkmjmhBi95NQIJ5K5XKZz858xsz6DDVVwx/14x30\n4na56Xa65Gt5lleXOXP9DBO9E7x4/EX6+/ufdLWFEOKRklAgngrdbhfbttF1nbW1Nd4/+T6pdorB\nPYMMR4dvKx+NRwFo1BrMzs2SfDfJq0df5eDBgyilHnf1xS7jOI58jsS2JKFA7EqO45DJZFhZXqaY\nSlHP5cC2yZVKXMouoQ26OPLiEULB0F234/V7mT4yTWo1xbtn30UpxcGDBx/TUYjdolKpsLy8zEZm\ng1Q+RafTwdAN4tE4/b39jIyMEI1Gn3Q1hZBQIHaffD7P+c8+ozo3R6hWY8DnI+T10u50+Iv5Kygj\nQ7AU5uqvPyY4MszE1BQe9907Fg4MD5ByUvz6/K/p7e2lr6/vMR2N2MkajQbnPj/H5cXLFK0iRtDA\nH/Kj6zotu0W2kuXztc8JXQyxb2gfx48dJxgMPulqi6eYhAKxq8zOznL1o4+I5vO8NjREdGTk5nsf\nX71Cw9/mlX0H0HRFsVZj+do1LuZyTB4+TE+0567bHhgZYLYwy6kzp/jNn/6mdD4Ud5VKpfjw5Ics\nlhfpG+9jOj59x8+M4ziU8iVOzZ9iNbPK6y+8ztjY2BOosRAyT4HYRWZnZ7n6zjvsbbV4de9eooHA\nzfeqjQZX86vEB0LouoZCEfUHODQ4RLRYZO7cOQqFwnfuY2hyiIXsAqlU6lEeitjhNjY2+KsP/4r1\n7jrTx6aJ9ce+NUQqpYjEIuw7vo+Cq8DbH7/N0tLSY66xEJskFIhdIZ/Pc/Wjj9gL7Bsevq0T11ou\nR8Gp0hO5tWlW1zQmBwaIVKrMX7pEq9266358AR8ts8XSsnxpiztrNpt88MkH5LU8k89MYpj31iCr\naRrj+8Zp+pt8eOpDyuXyI66pELeTUCB2PMdx+PzUKXryefYODd2xTK5aQXkVmnZ7j2+FYqK/Dy2d\nZnlx8Tv35w/7Wc+sP2i1xS51/sJ5lspLjO8fv68RBqPTo2xYG3x25rNHUDsh7k76FIgdb2Njg9rc\nHMeGhr71SzhTL+P1uL51G4amMxwKsrC8THNs7K4dD30BH6W1Eu12G5fr27e5m9VqNfL5POVy+eYs\nkIFAgEgk8lT3oq/Valyav0RsNHZbC4Ht2FSrVWq1GlbbAsB0mfj9fvx+P7qmA5stBonJBDNzMzyb\ne5ZYLPbYj0M8vSQUiB1vZXmZSKNB5Gt9CL6pa3dvuafbbnfI5stUq3ValQZOp4ujK1LtBkYoxqGj\nh3C57/yDr+kalmNh2/ZDP5btLpPJcOXKLLOzOcplsG0/4AK6KLWM328zNuZn//5JxsbGnrqx+Csr\nKxTaBfb07bm5zOpYJJNJMiurdItFtHaLLz9ZbcA2XejRCPGRERKJBKZhEoqGWHfWWV5ellAgHisJ\nBWLHK66vM+L337WMW3fR6XSxrA7Lq2kqqxm81QZRx8HvMjA0jY5to+fy5BqfcX4pg29yiLF94/j9\n/lt+3DpWB0MzMIyn48/HcRzK5TLnz1/g3LkkzWY//f3HmJjoR9e/Oge2bVOtFrh6dZGZmS84cmSV\nF154Dv93/N/sJtlcFuVT6PrmVX+hUGDh6hWcjQ3ipoveUAivO4Zi8/Pk4NBotckWimTSabL9/Yzv\n309PtAdv2Mt6ep3neO5JHpJ4yjwd32pi17Isi2ahQMjrvbms0+nQaDSwbRtN0zBMk5DLSypVoJDM\n4s8UOezz0NcXwbjRemA7Dq1mk25Vg3IWe6bO/LmznO4L03dwgpGhEfr7+umJ9VCv1BkLj+3qUOA4\nDqlUivn5JZaWspw+fZGrVy00bQSvK43PvUE0GqR/cJBQNEpPTw+BQIBQKEYoFKNSmeDUqc/J53/F\nj3/8ylMz9j5dSOP1b34WN9IbLJ0/T7TeYLy/H1P/xu0E26FUqVGrNWnWW3gsi9TKJVKzy0w9f4xw\nOEw2m735ORbicdi932riqdDtdsG2sZVifX2da9evk0omSWWzZEslCnablkujjM1qJcvBgI+JcJjl\nVpv1UhOUQncsus0qGi26joUd8NI/0k+vHWAxVeT6zCxFu8jcxhx9gT70qs7LL738pA/9kSkWi5w6\n9TmzsxUajQgzMylmLrsI6kfx40HRodFtUl3KkLuySLzXTzIexz84yNjkJMFgkGCwh6mp15ib+wTT\nPMnPfvZ9TNN80of2yLWtNobHoFgssnT+PANti9FE4pYyjuOQShfIrGUhV8Lf6RBxFKam6HMclpYy\nzMys4J6eJhGfwrIs3G73Ezoi8bSRUCB2NMMwyJVK/M3581STSZxSiVa9hq3axNwOA6ZGw7L5oljA\nqdT5rBznQqEXn+olqoeIuVy0WmUscoT9dYLuPKGIice72dHwwIQHd7LAQqFN5NggSwtLMA+NI41d\nOX/98vIy779/gXQ6RH//CVaXz7N8aYNh8xhDsVEMTaPdqWPbHWzVR6VepVrOEdKLUK9zJZ1m8MAB\nhoeHMU0Xk5MvMTPzPkNDFzl2bPc3g7tMF61Wi+T6IpF6ndHE4C3vN1tt5q6v4axmGFMwGPLjNXRs\n20EBuqFxaKCH6xtpZq/OUl+u8uv33+f5l18mFLr7lNxCPAwSCsSO5TgOFy5c4NNf/YqxhQWO+ny0\nNYtuXCcW6cHr2rwyPZvKEuxGGNeOkK/7aJtBPL1hmo5ipdhiyBtjuGeUptVgqZBCV1m0cIGxgfDm\n2PH+MOVUkfxSDtM2iU/EOTN3hkgkwjPPPPOEz8LDs7a2xl//9XlqtTHGx/dx7dIllk7/mpgxTcir\ncX3lP1CrrmA1G3RtBwf4/9l7kxjLrjPP73fOHd88v5gyIjJy5pgiRUpUUaJklbqkGrrcgI2CZQO2\nyzYMNwwYqI298crwAC+M2hleGEa3vVABXQ23u6vQqqJUkihxyGQy5zEiMyIyxhcRb57ufI4XkZxT\nFEmRzEgqf5tA3Dfde+LFuf9zvu/7f6btYjh5tjsFvnHqCIeShI0LF0iShPn5eWzbpVh8jIsXL3Pi\nxHGyH5EM+mUg62S59sY1dGubhXyRO6vbOI5NJu3g2BZL11cpNFospF2SIKK5sYvyQtAKhATLxM66\nlDNpqv0Wk5kcxuXLvDYY8I1/9I8oFAoP+hIf8SXnkSh4xEPLlStX+Mk/+2ccGww4YlkYMkDmNBOF\nHPLeCv52Z8CZTZeMfpJnShW6oc9GENBo9IhKFmbJZMsLccY2pXSKYnaKwJnl5soWUdTk2GwZ0zSY\nzbqsvnmH2aef4fnvPk+v0+O1y69Rq9W+FH0QPM/j1VcvMxjMcPTo0yzevEnn+gXiQDPqX2BnZQcj\nzpEyZqhYBSzDQaEY+QMGwyZNfYv/b+8S3//aSxyuH2P12jUymQzVapVK5RCLi9dZXV3lySeffNCX\n+rmwt7fH9euLvPH6Chd+1mMyM0OYqyJQaAYYxgCvv8qJoE81k2LU3CEdRExaBq5lYkoDDfhBwGgw\noicko8GIJDPkhSNHOLuywtlf/ILv/OEf/k6EYR7x4HgkCh7xULK3t8fP/vqvmdre5usLC/zq/Bki\nR3G4WHznOS0v5PVtG0PPM5+pIQUUnRQaUN6Iu62I1HwRbQnW+2OEdogtk1S6yNAzOXd9RGewwWw9\nT9gZU+0mTNQnSGVSpDIpltpfnj4IV65cY3XV5Pjxp2i1WnSXlxn1l9lYvUhWzTPtvkgpM40h3p4y\nFFEck6FM1ZxlnBxlpXeVH7/yMr/3XJN8eoHXfv5zqrPT+JHP3t4G3eFZ/qjXZaI+wdzc3JciTp4k\nCVeuXOXNN9fo9crkci9StQfUKy4TlXe/i1vbd1Cr63i+oG1tc3oyR62ce6cK4W1yjk0tAwPPx2jB\naG2N20tLPHfsGD9fXOTa7CxfeebLH4Z5xIPjkSh4xEOH1ppf/vSn6OvX+fb0NIN+D68oyZj7VQRS\nCGKluNKKGYQLzNgF3jYyNIUgbzpUZMA4CtlqDJmcz9MxQq7sBhQLWdKjJlaiyQRltvbWMNINMtk8\nmUyGvfUGwekTOK6z3wfh+n4fhOnp6Y8+6QPEaDSi2+0yHo+B/fE8d+42rvs0jcYml8+fpXn9NRqr\nZ7C8p1gov0TKzCGFRCmFH40ZhQMCPSYhQQgQ0mAyfZztgeBvX3mD9ORlCoceY1AMqNfrWDrN1rjH\n6xuvY9wxqF+q88xjz3Dq1Kl3yvceNpIk4dVXz3DuXJdi8TQnT86xu7tL3c4TDEckRYVhSJIkZry7\nzlxsM2fOInWRje4uKSsidx8vDKU1wTjkdGWKllLsXLxIynV5rFjkysWLnDh5knQ6/QCu+BG/CzwS\nBY946Njb2+POmTOcdhyqrsvNrTsszE3R6bbYG4+YyGTZHgVsjuoUzCL2B9y8wyTE1yNSeBi7Qzb6\nEEYJMjDJDwtk0nmKwkUlmr1wismMz4szddaHPhfeuMyNtMvMM6eoTdUIrID1jfUDLwqUUty9e5fV\nxUWGa2swGmEnCX4QcGtlhVfP3SUy69hhhG7uMRhuQniYqpxh3GniW31iqfCCDmPdITEChAEgUBr8\nWBMGCUFiosUUm5uLtMMW/biJ/cI3yeazSEosnFzAMA12N3f58bkfs761zrd+71sPpZfBxYuXePPN\nLlNTL5DL7XfYDMOQQ+Uyge+w2+wxWS/S7u7B9jbzpJjIZUCnaY1N7uxt8fiUgf0BUbTXHSIik2wx\nRzAaUbQsmrducfj557HabdbW1jh16tSDuOQvDKUUOzs7NBoNGs0G3UEXrTW5dI7J6iT1ep2ZmZkv\ndVnwg+LRiD5kjEYjGo0GvV6PbneE1pBO25RKBWq12u+E+9nS0hJsbvLk9DTNfp8hAdP5MpZtsNNo\n4Pd6XGomtMYF4jhhRELeVDgSxkmfwaCBCAdMIUn5BsORQdqwQEQY/QbjUZMdO0fNqVMVJdZ27jKd\n3Ea7NjPVMpmNbbb6I6IXniZTyLC9t/2gh+Qj6fV6XDhzhuH160wBT1Qq5EslWs0md1dX2bt2ja+3\nQvL2mPUg5Fx/lzipkTbq9HWfoTfGH44YGH0SJyFxQZsSrUGFMVFgo5ICgiqm4eCIWbKqzKhzm04S\ncqn/SzIVk8njCYk6gWM5TB+exqt5XLl+hfAXId/7zvcOxOq33+/T6XQYDocopbAsi3w+T7lcxnXf\ntb5uNBqcO7dJufzMO4IA9nddxn6Xgplwa/M2d7b79Ls7nO5uY5Zm8EJJynKppCvsDQPWu3scqeQY\nRQlrI5/Ffo9Roihks1wZbdMbeEx3HUrDId6VK1QOHaLZaMCXWBRsbW3x1sW3uNu6i2/4OFkHN++C\ngI7f4dbyLcwbJtP5aZ598lmOHj36pasCepA8EgUPCcPhkCtXrnHjxi6djgEUsKz9EqU49tF6jUxm\niSNHcjz99CkmJycf7Al/jmwsL1OIY+qZDDc7bQxHIqXAMCxawuZSf48bHQvX1Sg3xFUa4oRRf5e6\n12UqtMmKSRQ5nAQySHKuTRQn6FBRZswgaNPU2xRzc0gxgyV2iPtjtv02U9UaJd+j8doFck+doJt0\nieP4QK5a9vb2OPvyy+S2tnhpdpZ8Oo1SiqXFRZrXruHt7jIx8siaGbaSmB29S8PpYclTKCumn2zS\n1/gW7wUAACAASURBVEP62kcJgWU6pNMpXMfGjxSBlQHLRoYKKx7hSgtTW+TVIfyoi2WUsJln1Njk\n7uAMr//c5Ft/8B1syyaVSXH09FFuXbxF4a0CL33zpQcyuWutWV9f5+bSTVZ2VhhFI7Sp99vFxWBq\nk4JT4NThU5w4foJyuczlyzcZDmucOHHoPWO9xvWln7PUe4OpeorcYc1okDDa3cbM+mxbDczAIOtn\nqLgVCm6VzX6PtuqwmIxpCp9C2WG2WKScTpFoTb/vs1f22QwDhjfOcSIMKdRqX8pyWKUUFy5c4M2b\nb+I5HtOPT5PO3l8oBn5AY63B3772t5zePM03XvjGlyJH5SBw8GaxR3yIlZUVXn31OltbKarVr3D0\n6PR947D9fpOrV++wsvImzz03w1e+cvqhjdd+FM2tLSYMA1NKesEYJ2Wx1hlwpdui7fhkF/KkkjSm\ndAiDEBUGJP4uM0mfvFUiII0OLUQsKWKBAB0bmJgIKckaZTK6huU12I2W8V1JVDTIpvKUbYnX8QlD\nA6O3xqaAzJFnDmQfhH6/z9mXX6bWaPDc8ePvJEMu37lD9/p1RL9PcTikMRxxJukT10wiJchtV0hp\nxYbfp0OK0CqBYyBlTBiPiQdDBgMfwypjOYooMybMBIyTmIFnkwry5MQMUlnsdtYplI8j9AR56ykW\nf7YG/ILv/OC7GIaBZVvMnJjh0q1LzM/Oc/jw4S90jEajEefOn+PS6iWSVEJtocZEYeJ9/zdRGNFt\ndvnl7V9ybfkap+ZOcedOj4mJ/XLUJIlZWnqTO83zjLMjzLkC0nKwpCStBJlE4giHKDbwRUI3btJo\nd8iqLIvRkHG0S73sUk9nKGYy2KaFBmwJhVyK+lQZ0zS5ajV4vXmN2iWT7/zpn1J8T1Ltw47WmrNv\nnuW1m69RXigzM3H/bqdv47gO8yfmGfaGnL15ljAO+c63vvM726Dss+SRKDjg3Lp1i3/4h0WUOsKJ\nEx+dlJXPV8nnq7Ram/z855cYjXxefPHrXzphEIUhzjv2xIqVTp/bYohZkRwqZtnc7ZLEgmzKQBmS\nntdmbtynaEzgyBzKFIyNADkeYMYZtHbQSqERqEgTxQGGlNSNGUTscH2wyGJ3wMl8jkppikQl9BOB\nYxQYnb/BXubQgdslUEpx4exZsltb7xMErVaL9tISqThm0Gyy3m1xxu5g1ItM5/P8ZGWdzvgYnnkC\nz8ySuGmslI1lGkgBKg4Z9lcIwjsYqWWcnINMFUFaqESQBD6J1yfwtxB9STTssrJqknFzVNJgDad4\n699cwUzZfPPb38QwDHLFHLu5XW4s3vhCmygNBgNe/sXL3OneYebEDLni/a2YLduiNl2jOlVlZ2OH\nv3n1b+ivzfG93y+RJAk3br3KzeYZyFlEAQSDMTuDBjaCRm+MCBOkkkhhIWQa0zRox31e7d+mlY8o\nuwlmFkZ2hE66yK7AxSAdQq1eZsowEEJwqJJj6Aesq21+9suf8YPv/YDUe+y9H2Zu377NmVtnqB2v\nUax8fLGTLWQ5/ORhLl+9TPFSka89/7XP8Sx/NzhYM9kj3kej0eCVVxaR8hSHDh3/2K+rVGaw7RTn\nzr1BoXCV06dPf45n+cXjpNOEcQzA7tjnctCieiRLNmvS6nXxB31snUaiCeIx6XGPglnGNfOAQCcK\naZo4aUXfG2EFEossIDAQmNpBJYokUZREjbpa58reBlnbYc5JYTsW/rALqVmcvmJ3cQWt9QMdkw+y\nsbFB//p1Xjp06B1BoJRibWmJrOfR63TotFucN7vU5lKEvuB2y2e7fxR4jsCeQrsJlq3Qht5P1VQx\nnr9ClNtFZidQqkYS7WGPmhTIkBFgAco2SQxB4EiMzIBs91UMXWSnX8VNHccY1njzX/4Dtil4/Cun\nKeQL1KfrrN5epd1ufyF5MVEU8fNf/pw7vTscPX0Uy/7Ntf9CCCZnJ9m+u83V8z1WV1cxTY+rW68S\n2gnmbo+CYZDJ59lr95AqRcGyUekKaX9M2bQJkpjteMzFeI/NyQBp2+xEaYKmxLU02UyM6yg8S7Om\nI9a6Cf1bkpPTVUxTEkUh00/PstRdona+xou/9+JDH0YYDoecuXQGq2p9IkHwNqlMiurhKm8tvsXc\n7NyXOnT6RfBIFBxQoijijTcuMxxOcuzYxxcEb5PLlfG8J3jzzctMT09Tq9U+h7N8MNRmZ9mLIoZB\nwEowIs4l5HImzU4XPRqTMQUhQ6J4RBL1mBYmjlFEColOFAZgIHBMk8CJCCKfks4ghIklDCyxf4NQ\nKEKVUNN5BoHL+d6Yuufhug5Fy2Fv2KZol9ne7LOyssKxY8ce7MC8h9WlJSbimMJ7svo7nQ7R3h45\nw6DT2Oa6GmBN2lQzJmd2ffbGJ0nZedphlthWmBYkBmgUiY4IvTt4mS1krkbKsBCJRscWVtIgbw6o\nm3kMKQFNEEWESqGzFlZqRL7fpxZp2u2IKDNJ0sqw/eYFjDBk4fRpqtUqW/EWnU7nCxEFly9f5tbe\nLY48c+RjCYL3YpgO+VqBK0vnGYfLDEWLWuwwUSigkoTtzpBQljC0AXoIpk1f9ZlGsOL1eCNss2Nl\nMeUxYp3C0xCHDjJKMMYJhm4jZYNysY/MBpzbvc3m1ian6iW2kpBaEnN0tsKl5UssHF5gZuajt9oP\nKkopms0mb7zxBmevneXQyVmWriyRzqbJFrLkS/mPLXgqExUWG4vcWrz1SBT8ljwSBQeUu3fvsrwc\nMT//1Kd+j3p9nlu31rl58/aXShTMHT7MkmVxbmuLXiaiknHoDEaokYeBZigC7LTADz1S3oiMWUZj\nkiQKE0gQoMGQAsey6bsRfuRhJwKDd28QEokpIhwSymKSu77P3Y02tuOQSaXYbu+RN+foKYtr164f\nGFHg+z69u3c5Vi6/73in0yEbx/SHQ5q9Lt2q5mjBZWcY0vKnyFpT7IQBnoixTFASpNAooQn8PXx3\nGzNbImNYSATEGleapJjEUyGDZISrXAzAMiQYMbkkppLyaKEIPJtTccDdwQa3tcnK2g5PHp1j5dJF\nzK8+B87+lv7nzWAw4OLiRcpzZez7+AT8JoQUpHMZNpaX2Olc5Jljx5kql1FKsbG1w9ZWlyAcs9rf\nxQt6mHHA7njE1U6DhpEjcJ5E5NJEbpZEuygTTJHCwiDRIVpNo5NZvNYWcbLObDVNczDi6laTQcGl\nsrnJXcsiTmwWlxYfOlGglGJ5eZnr11e4e3fMmbduMjbnGY0raGKgh+O2qE8LDh2rMTEz8bHEQXWq\nytLGEl8dfvVLb6f9efJIFBxQbt26i2FMY9vub37yR1CtLrC4eJ5nnx09lLXg9+Ppp5/m72dn+buL\nZ5g5lWd35NNst8gZ0FEBbtqgXva5tdIkEyY4ZhapBYna3+JPYP+mhiBBY7gSPwmwIhuJ5l2TOc1Q\nd5AypmrOcFfvstXPkG7scXT+EEl/THmyQtVOcfv21oHJCO/1ejAcUvqAd8Ko06Fgmmzu7rKBT7rk\nojXcbTvknHmk1iRoQmNE2igQsC8IlPKJxF1ExiZl2BhIkiAhmygM7TEeecSRw4iYrDAAgSF9NAMs\nY8hExsJSETtxnxlV4RgmrWDI7a0et9fXODw9w+qtmzh2Yb/r5efM6uoq7ajNickTn+r16axN4Ldp\n91axiSml0/vOhpcvcHN9kSgdojOQTCq8wEMEMW1GLIc1nNQCiZtBWnlcckhpgo4hMTCwEEhME+x0\nmTCZYrNbxouvcGI6x+KoiRG4/MdHj7LT67HUHfLTzk94/rnnH5qb4HA45I033uLq1QFSzpHN1ihU\nHCanUu+0nAbwxn221rbYXttk4VSH408fQUpJa7fFqDei3/WJQ43lSPIll1whR76UZy1Yo91uPzTj\ncRB5JAoOIL7v02iMKZV++2Y7xeIky8uCVqv1pREFruty7IUX+NFb/8ARp4Q9MokHAb0MKGe/UU86\nI4AtnLCMMAQmoAxJECu02v89UZoIgTRMImL2N8pjNCYaGKsxHm1qdhlBFiPeRVl5Wu0Y09ykkuQo\npIt0pWQ4VAyHQ3K5+yerfZF4noeIIlIfKNEKhkNMw6A7HDByYcIxaI0jev401WwJL0hQxCTmmFjF\n+6EDAVHQJXI90nYVKSVhnOCGYyJ/yMjPoqMj2DJHLPtgGNjCJNEBw6CDqQTbskPWGGCaA7b6azxl\nVzjh9+mPPV4/e5PO3Ihae4AzfQTj1OefFHt38y7pcvpTW1Nn8hl67Rsk4zaTkzmarSZ31q6xMr6D\ncSRNdqKMMiAME4ykSNDr4LUKxJVZlJ0mURa2tLCQGFqB0Gg0SgkMaaGIEQhSVgY7f4pWX3J1+yyy\n6BD7DsvbOzw2P0vatnn9rWu89uqr/MH3v/8Zj9JnT7/f5+WXX2N52WV29ltkMgWazSZBElBMvT+X\nIJXOk0rn8UZT3LhwheUbPyeVKTMaZtGqgGnWkIaBSmLieICUu5RqmxD16Xa7zM3NPaCrfPj5RKJA\nCPFfAf8UOHzv0DXgf9Ba//gjXvMd4H8DngDWgP9Ja/3PP83J/q7Q6/UYjWB6+qM7or2d3PZRq1PD\nMNA6u796/BJx+vRpfrQww/nGFsUoIhxEdGKPQtEiivcne2n3SCKJdmKEtBACMCQJEMZqf/wkiBhA\ngYoZ4TFWCi0tPLoULUHBrBAphRmZeLFilOQImi1OHZphCESWg9YO4/H4QIiCj0IpRSfwiCxIWwbb\n/QSoYUqDtCtxHYWWPbxwjLLSJLHGV3tYaQfbEigFjHtE/RCdzGJas2A6SGWSKAslepiGjcDCFAEl\nfYS+79OLVyjYq1j0qCVZDlkpIr9LWhmYSw262x2axT38b/x7n+v1R1FEs9ckM/XpBXKpWiL0NtF6\ngE4szt94lUGlS3q+SCpfJk4iQi9GCBvHFAz2JLGaQ5dLxImLICBxAkYR2MrCRYGUCCFBSJRKSFSC\nlBJDmuQyC+z02qRyi9TLZc7fanB4sk61UGAy57L8xhtsPfXUgXbVjKKIX/ziDMvLaY4d+wamuR+m\nS5IEhfq1Ak1rzagvuH6+yPR8jce/+hUs68N+BHEU0Gs32LjzJq9kzjA/P/+oo+Sn5JPuFKwD/x2w\nxP4m638K/GshxFe01tc/+GQhxGHgb4D/HfgPge8B/6cQYktr/fKnP+0vN1EUkSR86MuvlKLdbtNu\nt+l0xoxGIQC2bVAuZyiVClSr1ft0UXOIougLOvsvBq01UwvzXLiwQmVjg7IERwjCQUImrbFMSSUr\nEFaHKNwBawKERZjcEwEapBSYQiAUIMCQYCKJVIyvWzhGl6IxiRASLRVKSbzxmHljFhcDrRSeSkjc\nDK774N343sZ1XbRl4QXB+3YLLNcl7vdJhCBCI4Wm61m45n6IyhACIQWkYsbhHsTTCCcBI8CxbdAJ\nXnebeG+I1JMIx4PkJjpxsMkihI2hIlKGi6d8LDHAUlAwMpicZBS4jPQSUaKouynmIoGfcpksuRhD\nWF3e4vLf/z35fJ7HH3/8cwnFBEFAkATknE8v3kzTJCMH6KTPymaLQbFL5USdIBBorQiDBDCR0mDc\n7RN0SoR2FmnmEdLevwk6oAgII42tbCQKpSNM4aC0QRhHGIZJoBJ8aWE4xwiHPZxph0YrotHtsjAx\nQSGboer7XDt3jsk/+ZMD25jr2rXr3LoVs7DwzXcEAYCUEoFAqQ8Lg9Ggw/KNmwx708zMv4g3WqPX\nHlCd+LAoMC2HysQ8g3bMyork7/7uNb7//d97JAw+BZ9IFGit//YDh/57IcQ/Bb4OfEgUsL+rsKy1\n/m/v/X5LCPFN4C+AR6Lg1yCEQAhQ91YLsO9Mt7S0TqsVE8dZHKeCZe1P5oNBSLM5AjYoFjc4dmyK\n6enpd16rdfKhCdb3fbrdLkEQIIQglUpRKBQeCvOP4XDIv/yX/4pbb1ziULrGnhXhqw6HDBt8xSCO\nkA4gJKGryYodRl5IoKuYZLCEQWhIlNaY2tjfhhQaU9pATKx2KYkxOZ0ijjyEEgx1QKwlRQpMpufQ\nIqQT+vSTiDBXpZpPHxhHtWKxCNks3dHofaIgXSox3tzEcRziUBEriJL9tr2B0mwNRzRGCXFREmSb\nGH4WyzIRIiaJE8a9DUKvgyxUkfkR2vQQgI4TwrEG3yAKNImu40ioGQEFrclLA2GYGGKBjfGY7WRE\n3bTJGxAmgC0whMFRnWei2WT5pz8F4Iknfvvw2f0QiN+qhHQ8HDORS3NzfJ1mLqRypE6iFFoZ+H5A\nFGksy8aLxww6ASqaByeNMNIYCJQyiQ2JsAMMFeBrAzcx7gnSCI0mSRKCOESYNkiJk50mDtv0BxuU\nRJ7VRo/5eg1izfGZSdbu3j2wjbnG4zEXL65RKDyJ47zfVyGVSuEYDoEfkEq/+1gU+txdvMWoP025\n/hRCSMIgoLG2Salauq/3ilIKW6Y4efJrrK3d4Ze/fJPvf//bj1pNf0I+dU6BEEICfwY4wC9/zdNe\nAH7ygWN/B/zlp/3c3wWy2SypFHjegHS6wJ07y9y+3SGKKvc8CO6ffBjHEd3uDm+9tc3eXofHHz9x\n7yY/IJudIEkS1tfXWV1cZLC+DqMRvL2D4LqQyVBeWODwsWNMT08fiKS5D7K1tcX/83//v9x95Saz\n1gSH5+ZYjV2W4rts6ohMEGAHEAUJKoGOThhJjTJbSG9Iogsoo4QhUkRaoKUgUTFxMiTQHo4YUpEh\nU2ISS9iMkpCxDvGFQpgWNbuIFIJIu+xFPXq2Q6o0QS43OjChA9d1yc/OsnH1KlPvqUAolErcAQqp\nNOEIRlGMwqQXxTRHMc1BFjPJQbKLWYeks0HQLkKyR+IOUekhOjONzM0iDZP926tAahAFgfIHqPEW\nvWGTrJ/F1nnSwuRelIaM6WKIw2xEtzgR++TSklasiaMEORLMZCaI+xFP2DY3f/UrKpXKZ15e5rou\njukQeAGUPt17RGEEcUxseehKiB8GiBCSxCaJAUz8eIgfA+Ms4IJ0UcIGGcO98BaWRaIiPBUSxxaJ\n2C/n1CSAQU46mIZBIAwcN4tMJgnCDRIieiNFdzDCFTYz1SqD7W22trYOpChYW1uj1bI4evTDcf50\nOk3aTjMejN8nCnY27tBrZSjVHt8PqwCZfIV+e4d+p0+p+uE/3ng4JmWmKBSKlMvPcfPmz5mbu8HT\nTz/9+V3cl5BPLAqEEE8CrwMuMAb+TGt9+9c8fRLY+cCxHSAvhHC01sEn/fzfBXK5HLmcpN9vsr6+\ny61bQwqF41Tv84/wXkzTolo9RBCUWVlZIo5vcvz4DKlUjNaaX7z8MuObN5nUmpPlMsXpaVKOs9/E\nJQjoDIesv/UW569cYfWpp/jKc88dqOTE7e1t/sW/+Cmb57f57uHnuNpfxA9DEIJqsUg+l6I/GtMb\nj4iDAN8b0bB6lEchh+0suRxo1cOPeqBThIlkFGtsYmwdMWlUyMg0hsriaBdTWljSRiUeq7pP2nZI\nSReI8eOYRqKoH3seyzKYny8fKOfIwydOcOX6dfqjEUkYsrOzx95ej5sND78D/R7caPTZGgdsjwWG\nypHXLrYRsak0iBjtDlDeNcg1SAoOGCYoTRL20EYGYaT22yZrhSkEyjaQroNbGKD3dtnpJWRklYJm\nXxUISUZkGSYTNONVZtIOJAlBL6RMgWp+gr2BomjbTHS7XD5zhtqf/MlnOq6maTJRmmCxv0ht+tOV\n6cYqZn2rgWeGuFmNkAFRLJC4CGmgMQgjhYwdwsBEaROBjRAWiVRorZBxgmk7aAtUpImlwBD5e+2p\nA5Qe4CUxiePgullMwyaReeLAIrEUYSxpNDvMmTWKmQylVIpGo/GZjdNnSaPRxDDq9/07SimZm5rj\nwuoF9IRGIAi8IbtbfVLZZ5HGu6t8wzBROs94OL6vKOi3+yyUFt5prJXPn+Dy5ZucPHnywOziPQx8\nmp2Cm8BpoAD8+8BfCSG+rbW+8JmeGfAXf/EXH4oJ/fCHP+SHP/zhZ/1RBwopJadOTfNXf3WBVusw\npdJjpNP5j/16x0kzMXGK9fXrDAav8eSTI26+9hrlZpOvzc2R/YA1qhCCjOuScV0OVau0+n0unT3L\nKzs7fP1736P8gXr3B4HnebzyygVuX+twOlvi2OQCTb/D0ngFYZokKsGxLWp2gSiXpj9q4XoJI39E\nxw942syRMixM6RCoGF+B0hDECTLwOeRVqJklEq2JeXdrWQhBV3jsqIhDaNJmhlhHLMcdvKmjPDX3\nOEFwjWPHvvoAR+fDzM7OcunQIf7q3/49U0aNKMrhOlOUJsvsdG9R72re2ltkIGz8saBkGkghGakR\n2msRd7uoeARTHkw6iLKBDjIgLHTSQXldRJQGUQUjhSJEaI+MFeG6LqaUjFSbrb5LWpSR7OeByMTA\nUBU6xh1mLRNvFDCZL1LNlEgMAymyDIdDnpid5R9WVtja2mJ2dvYzHZvDs4e5dvYaSZJ8YsERRiE3\nb97mbruPmXMwLJN6qURz0KM72EPrLDEmmvR+uSESrQxUopAESAHaTKPDAZGtkIZAyQhDKBJiEi2I\ntSLEwBAmOSeH+faNUUiIDWIUUhoMWh6PH5vDNAyyrsu40/lMx+mzQGvN1laPTOb+OxhKKRzHIekn\n3Lx6k1wpR3dvnXZLUJvOodkXCm9jWSmGve6H3mc0GGFFFjPT73o21GpzrKzcYn19/cB4iHwe/OhH\nP+JHP/rR+479Nonln1gUaK1jYPnerxeEEF9jP3fgv7zP0xvAxAeOTQD9j7NL8Jd/+Zc8++yzn/QU\nHzq01uzs7NBsNum1WoSjEc1Ohxs3fokQv0+1+uQnfk/Lcshkaiwu/msmXZ+vTk1x+sSJjxUSqOTz\nvJTJcPb2bc785Ce89Md//MB3DC5evML16yPqCA6X9yeYueIMq7vraGESBwlxEjPweowHe9hxSFYa\n5B1NL+2xMh5wzMkDFo40SYgxMJFaM/RNPOUQSIWBQGiJ4F6vAD3mNgllI6IoNeNwzCI73K7W+P0X\n/l263TWefbbA1NTUAxydD7OyssLadsj10QTCSvHU3CmkkMRxTHO3jVpxGI5KUMpi6R5KzzGK+7St\nRch3UTYQGjCTgqyDYAhWCiwboWyEq9HBEDEcYkQVTLuEkgkJAqkUjmMjygkdv0UrzDBFhlGcQKDJ\nSANfpOn0fDKpErVCmXSQIjRMXLfIcOix4LrUlWJ9ZeUzFwXz8/NUL+/3MZie//jb7YlKuHr1Jmt3\nE5J0FjvVxSWNwKCWK6DDJoOgT5DI/cRBpVA4ICKIbNAaw7ARtkUcxOggRjkGiRRoJCNMhEyjRIRp\nZNF4KP1uoy2tE7SKkdphPBownZrh6L3wihACtD4wXhlvkyQJYajumzTdaDRY21yjNWwxjIZs7G2Q\njtL0dtYYDY8Q7mySdjIUsgXSmfR+qMqwiML3Nx+LoojOdodTU6eoVqvvHN9PaKzQbLb5EmuC+y6U\nz58/z1e/+ukWKp+FT4EEfp3cfh34ww8c+4N7xx/BvnPh4qVL+OvrZHyfgpQUbZtgY4PHe3s0vL9j\nO9rDnDhNbeI0tv3xTDmUShgMbkO4S72lOP2Nb3yiycI0DL527BivLC1x4c03efHb335gk81wOOTG\njR2kLFCO7pJP7Y/BVKHOsd5hdrw9fC+ksbeGHQ2oCUnOSiE0BMJioeyxrAPkeMhh1yTFvgFPpBPw\nQ+pxmcBIsZ5EZIUkoy1SAtpqyHXt0QKeMHy2Y8U1f43xka8ze+IQSRIwMxPy/PPfOlAT8fLyMj/5\nyXWk/Apf/8F3WLv0U/TWEkdL07Qau6Q8Hz+dodB6hvZoGy2b9INtWtYOg2KbRGgyWz6i0CWFi+jF\nxGpMYPbwMgbCcjEsG4wM2goRgyaJF2KlTRLSBGqEi8ZKpwgKI/Z2+9RFln4Qk/dj8ikBKodvhBya\nmoJE71eEpvOkUnni2AOgms1ya3PzM7/RpVIpnn/yeX587seMK+Nf2573g2ysb3D3bkiltEBsvYIw\nbaaz0+yNOqRyLq5pMg40rlnCkhmUmYATgClJEhdCjXZASIlhZomDLkokCOEgjBSSPEJYCA2WYRPG\nAbGKcbh3Q1UDRJQgpcAaKL79wpPv7Pr5YYiVyx2o7yG8Wy793sROzxtzc/EWa801ZFZSnC1SOVYh\nt5xjo7WOUBaFah3DsRl6A4bNIUWvSKVUBhTiPUUKgR+wu77LXHGOY0c/fOdPpQo0Guuf92V+qfik\nPgX/M/Bv2fcbyAH/EfAS8D/ee/x/Aaa11v/JvZf8H8B/LYT4X4H/C/h99kMOf/SZnP1DTBiGnH/z\nTfYuXOBQHHNkcvIdn3qlFO21Pb712L9Df9Bl8e4dBl6Lne4qudkXKRYPf+R7KxXTaJzDMJY4XchR\nFvvb72/H2j4upmHwlZkZXr16la3jxx+YnerGxgadjo2NpmC9Wx0hhOBk/Ri3t66zvNdH6CGH8xnS\n5v5zRlGMjWAmZWNXxlzFoO/1OW5mSBsGoyCi6BUomyWUEvQNk3aiaGvNVb3LXS1oo5i3ujS0yUUE\nYuE7PPbEiyTJ6ywslPjud79OPv/xQzufN/1+n1/96jpxfIS5uccAsJ77I5ZvvM71cz9jstVmKp8j\nUzjMXDKD2jNpZW6yoc4S5TWTfsxEYDAWPqpgkbZtNDaMPOI4xht0aUuDXiqD4eYxTBuV1ei4gaGq\nSCNNpFwi6eNKAydjMTT77HpF3IEmKwU5xyV2snhpn0nbQfRiQiHJ1OZQSmFZ+7N+Pp0mGY0Yj8ef\n+U7VyZMn2dje4OK1iyw8tYCb/mjnUM/3WFraIZ2ew2sPMXFQVpFMKkvkaTrDLtKQBNEAIYtoI0Jg\nYGU0YcdDqikSbwyOA2gwLQhdGHpgCVCABKVCDEMghIEQJvreToFKQpJoBxlrDKX4+rHDPP4eg57u\neEzxACbUGYZBseiyvT0E7lUiXLlIw2tQm6/huO/uIBxaOIRWCTu374IdkU9JsvksURTTHrSI5MKw\nxwAAIABJREFU4whHJhQrJkmS0G12CXoBRypHePzU4/etnDJNG8/7cpVjf9580p2COvDPgSmgB1wG\nvq+1/tm9xyeBd/b6tNarQog/Zr/a4L8BNoD/XGv9wYqE3ymiKOL1X/wC/+JFXpiaovaBvAnf9xkN\nE3K5MuXyNFLcorEzIt1eZDvsoxa+R7l8/yZJo9Eunc5larUAI7B40pxBx3sMh8NPLAoAyrkc1e1t\nVpaWHpgoaDY7CFEmHi2Ttt4/eQ+7DU7HkvGgxKWwz8hSpO8VAURaY2qNY1lMuwqzPuB8N2Krr6gO\nFDU/jWOm6IqYmJhBEtKNEjwqtGQJ0wh53BhTl4fpyjTzRZdw5gidzmv84Ac5/vE//uYX0rznk/DW\nW5fY2clx4sRj7xzL5coU6o/RyNzFS1U5s3uT1XGFXMpFyEk63TuI0hKPhxlqbhHDrRDoTZyMi0SC\nikGaGCrClZqMUuS7fXacHnGuBKbEyCck/R5Supg4+CrBEjGmYzK2ffodn7m4SNqx8RgyVCG1XBYV\nBFiBiT50iHJ5mt3dRbLZ/T+gaRiQJCilft3lfmoMw+ClF19C/0pz9cpVSnMlalO/PvFwb3ePXldg\nMSZpRSzUn2bbvUNzPCRnWjRbAf1xGzP0sADTSKGEQEmNVhItZ5GBjR6PSVIOQoNh5iDMoIZdECHK\n8pCGhWW4+8mIQqJVAmjGvQ2C4V3qusKpSp0/evapd1bhYRSxB5ys1z/zcfosmJoqcPt2mziOuXr9\nKg2/wdTC1IfyOaSUzB6dY2t1mU7Hxtsbo0yNaRtYlkWr14JRm2zBoHHboOgWefL4k8zMzPxafwal\nEkzzYHo3HFQ+qU/Bf/EbHv/z+xx7BThYWVgPmAtvvYV/6RIvzs9/KOkP9lf1QQDFYhopDQ4ffoxc\nbpPMVoNk7zpLo13CE/+EYvEwQgji2Mf3u3jeJqnUkJMnq9TrJ9g++2+YLNbpNQeMx+NPfb5zlQrn\nl5cJvvGNB5LFu7s7IJ0+zEir922P9gct/K1FjqdyTBVmyO8GnFtu4dUTcjmbQCegIEigF8MoEFSV\nTzuK6PpldsmzlMS4YohpmETKJCJH0ZJMGmMOWWlSlOjomHStSjUf0pDX+P73p/nzP//hgetl3263\nWVzsMjn59fdNkp7nsXt7macnjjBZKvGqsCkaE4z9LP3mLsIac9rNUXZjdBwwxiN2FbahIfZABOCE\nb3dIwjY0VQ2212Vt1CPJpJFmDmV56GiMYWVIMIi0j6H3Y/FpT1OwM8SGZCtq4eQTZjJZ4naAm5uh\ncmhfxEjpkc3u52dEcQyGgWl+Pm7sruvy3W9/l9qVGudunuPW1i2KE0VyxRypTAohBEmSMB6MufrW\nLXprFsdqj3H08ee4ducXdLu7rHbWyIw6VIVNhQLtSKMlCKEQwiS2NCK9Tqe1SGI/hurGCGVguGmU\ntMExkL5GjrJgR0gnIFEBiU6QMiDwIhgPCXZvMmMdZrZY57uni8y/RwCs7u5CvX5grX1nZqax7Qss\nLl5ns7fB5JHJX5vgKaVBeSKPaeUwrWn8sYcX+ERRhBVJPK/FlPM0X3nsGWq12m/0IPC8AfX6wSgV\nflh41PvgC2Zzc5Od8+d5vl6/ryCA/fCBUvv/ILD/s1abo1CoMz29i3n7Cjcaf42UX0VKA8OAfN7i\n6NEqk5NPkc9X2d6+gx16ZOwUfWH8VqutUjYLjQa9Xo/6A1iNRFGCYZhIJ0MwaAP3Qixbt6nEIZZh\nkVcx/9nsExT37nBlt4nuJvgioTOKQBpYKo0bGXw1NihYgk5Jspb0GSUGfS0hHlJBcCgTUywuMONW\n6I3bDE3N4fk5jh1b4Gd3z/PNb9b4sz/70wMnCGD/uzUYpJn6wIp3b28Xs99n4p73hFIm5ewkURgw\nFIuctIZU6zVUHBKPAoi6+/Hr2Nh3ITEtECmIFEI7oBOEiMlnLQ75IevaRxkKYZuoaAgyA4nEDyEb\nCFIIHCkxzRTNxGNd93khmzBs9ki5s1RPfp1isc5ec51yxaBU2i83643HWOXy5zrWlmXx7LPPMj8/\nz+07t1m8u0hzu4kf+yBAaIEjHeROmufm/oCTJ1/AcdIsLp1h5+YyZj6gmK+T0Yq04aCVydi3INHE\nxNjCpJY3iHpL+OEESk4QdDyiXIgs5CAao0IDV8yRkUVEEhGFHlIPscwQR4wRozWOpueoZ2Y5PrPC\nd586hn3vZjj0PJbGYxZeeunAGo9NT08zMXGef/W3v6R64jim9dG3nWw+S3unS6F8nEzuPSHVvVVS\n83UyxSz1ev03ikWtNXHcolo9eN4NB5lHouALZunaNSaDgMmPyKiWUiLl246G7ypq23ap1eb4XnEC\nZ2eV3BNHqNVmsSwHx3l/aCAIxmQQCCHQOvmt7E/TjoMIgt9qt+G3wXFM4jgiVZpksLUIwHDUgd4u\n9WyZYXeHtBTkLJt/Uj9KpZ/mBk2EHqO8DE9aGWpWCseRJFaEUgGJDihZaaq4+F5CSR0n4xYYRg3C\n0RZBMU1uZoYnjh8j5Vps7y6SnxH80R99830ZzgeJnZ0OllX5ULJZa2ubquO863B573hzcIeq3qaS\nsbFMkyiJMYwqUrfA8hCugTb3m03v3yH33fakMJBoJIK8aVL0FO0UYPkkfhMZ5LGUhZWYVAzFFppI\nC9ZUzI5UmHoHszfGOfIsR594iWJxgiD0iMIGh+ffXUXuDgaUnvr0rcM/CZVKhUqlwrPPPEu/32cw\nGNzLb7i3Eh2cp1L5Ko6TZmtriVsXzlLtuJj5OWzXJhIRPb9DIhIMw8UkiwskKsaxYbI6YrNxmVg/\ni5A1koGCsIXSHmY8iWUXMc0sCIhjg7RpkXhbyHCXw8US+VSdUu4K/8G3HmP6XsjKD0POrq6SPn2a\nkydPfiHj9GmQUjIxkScUtxDiN1eSFEp1TOs2YTDAvmdHPR52SKW7HHtins5Oh1arycTERxtbdbu7\n5PP+Q9da+kHzKNjyBdJutxksL7PwG1bbqVQKxwHfH933cddymDYMxr0dstnShwQBvJvtq1SCEP6n\nyid4Lw8yp7lez+F5PfKFOi1pEsQho2GHXBLjWg5J6GHJfX1bMG2+m59hYVQk6VWJzAJjBUhBLCWJ\nNIgsi5Fh4qgEczjCGWRJRBnpFnGyRxibeYwJl5mFSQJ/izBcpDwd8PS3vsaJE5+u3e4Xwd7e8EN+\nFlEUEQ0GZN6T0JVxLPxoxMC/zZSxH7MVAgQaLTSGGWEYFtoykbZAmDHCDDFthTRDMEGbJlKYuKZN\nRQmEp8FJoe2QxB/z/7N3p8+N3Hme3995ITNxXwQIELyLrPs+dJSkUrf6mGnLPeOZsSO082B27HB4\nHX7g6Cd27B/gddgbG7MRuzGxDxwOe/1AD9a79tqe7p2eVremWy1VqVT3yeJRPEECBEDcd2b6AalS\nlepknWTp94qoCBHITPwAkcAHv+P7UxwdVJWq5NBqSpRsSAPNbo5eq0rCM8Do7ncIBuNYVpdsZpr+\nftedinylWo2CYTAwPPwyX0I0TSMSiTA0NMTIyAj9/f34fL71Gv2SRL1e4e9/8+/pqyqc6vkxnqqP\nVrmNovnQ/CnwRGkpNjW61LBoyyotBbSwh0CiiCSfxdWdwaWD1NBQswE87QGcao1qbpHq6ixSuYBU\nyKKWFun3efDoQaL+q/znPxjh2Nj6XKJ8ucxn09NYu3fzxrvvbqnCWQ9iYzO030W9eoNqKf/IYz3+\nMMGoQrU0uV5YrVqk01kkNeLDF/Tj6A6lUvnRj2fbZDI3GB8PrZf9Fp6Y6Cl4iQqFAmq1SuQxpUhN\n08TjVaiUyw8tWhR1B1jIL2FZXRTl/v+NLpdBHajXK5im80z7i7c6HWxVfWVVwaLRMLY9TSh0kHSo\nl3Qxg1RZI7SxygDbvlMKFaDYqhF04vyBnuRGfZlyY5pOW6JBh0anTQebBn6Cxg7cbh9VtUlLK2IG\nVAxUup0IjcYqpqkyMpIiEh3iq+VlEocPb+k66pZl39OzBOsbANHpYN5VgjnodXN1bg6PlSOoe2jK\nNWzbQcGhK1dRNQXV0ug02hj6+mssOw6yCjYdHEsG2cSSJCQHDJeGp21T9qig69Q7NaxOC68sUe3Y\naG2TFH4qnQpRV5MTkR3sCseoV9fw+cJkslP09rbYvXv3xq6eDlcWF/Hs20c8/u0yJy+fruu4XOu9\nbxMTZ2nPLXKg9zCm5qGSKzORv0pVKmGGvHh9fVh2lm7XpNtxaDsKqmLgkjV6PTKmb5Xs0nlq5WnU\n+jhe9R00J06n06LZLCE5NTStiqxWCfttooEuu1PTfPTefvYNDpIvl5ldXSUty0TefJPDx49vyaGs\nuzmOw0p+hfEDY1RLNSYuXaBeHSLaO7RRLvtekiSRHBylXLhGer6LL+BiaNwkmljvodMNF2vlRxdq\nWly8QSJR48iRd1/Ic3qdiVDwEpVKJQKS9Ni1xJIkMdAf5dz5VWw7+cCuf4/hQankqdfL+Hz3Vxx0\nuwMUVI3VwgK7xtzP1FNQrFbB43llO4719/cTiUxQLK4QGz3C7a9+Tk8lz8DGbmuSomLbFgBty2Ku\n2kVXkgQ0Hyd8Jl9aHWq1AkkC2A6suSwCgT0E9Ph6cRipTstqoqoGLq2BtzdGuC9AINBkZGSE6wsL\ntPr6GBt78IqPrULX1Ts7Z35tvcfIuaenJ+AO0+pewXQaeM0AbWcVywaJDmgWqtuHr9QmX21h+G0k\nQJYkZCQkRcNy2jg2SJIBkoSqSegtG9m2QdVQPApyuYkqqTgNm2SjH49LxeQ2CcNHzOOjx/QzuTSB\nI9XoH9DYu2fXnd/Rm4uLrEUinDxxYkvs+meaJsGgi9u3Z7k1McGgFiBorv/N7Q8fhjxMZK/TbNdo\nBhUUVcG225juCJ1Oi263g2U5yLKGoXswDBslt4iq+PFH1mg2c+i6RSzmwjBMGnULu5kllShwbMzP\niR0DlNptfjE5ieXx4Nm1iwO7dzMwMLDl6hI8SLfbpdVtoRs6iYEE/nCGW5emWV5Io6oJ3L4QuuFB\nlhVs26LVqFKrrGF4luh0pomn3iTeN3Tneoqq0qw3H/hYjuOwtDSBqs5w8uS+LbVceLsQoeAl6rRa\nuJ7wjzgejxMKZikU0kSjqfvudykaktWl233wGlyfL0xZ0Si1l0iljj9Tu5cKBTw7dz7zEMTTMk2T\n/fv7+M1vbjI8fIri4H5uTZxmx0YYUk0vrXIOgEKrRrVj0mP6sWyH1UYduxtnUZLw2DYuzQJvP2Gz\nd6NqoYLH5aaNF7ceYHktjSx3SJphVlfnuDo9zaymsffNN195VcfH6e31s7h4b3lTTdNAUWl3u3d2\nTAz7onj0Oo1uGW9ggGJVxbZlunYbSV8/x2N4KRVrtHxtDK+GvPF7K0kyqqZhdzvYlg2OC0VWMBwb\nu2OhWjpu04/VbNCoSyi5Lm67To+WI95pUOy28KlBnE4eXWqwe/dOdu7ciaKsT4a9vrDAbU1j76lT\nW6K89teGhnr43e++pJnJk/R9M6ThcXk51HOcYDHEzcJVVstZWqZDQy6B2kB3hdY3ParXaZUbkIfY\nWpIxVx/lUBdpCAKBCIbhxTQ92HabanWG/fvHOHXqbVwuF7ZtoygKCZ+PUCi0pV6XJ/H10Ausf+Hp\nTfUS7gmTXcqSnpullJ+hVJCxLRlZsdFNi+SQxrFT4zTqDSavzJGe6xDtHcWlm+vlsqX7w2K9XmZh\n4QrhcIFTp/Yw/JKHnl4XIhS8RLKqYj3hlq2GYbBzZx9ffbVErebD47n3W/r6N1z5od+kLKtDywA5\nIhN4hjG1eqvFsuOw+xVPZNq/fy/z859y+/ZFRne9xd9e/oSzizd4RzPQXSZ1WaZrWay1OihSBAmZ\ndKPMatMkaaS4bWv8vn2VpCvMHnPwThljAMtyUDQZTXWhG2E6ssri4hplK8dCsMPbH33EyMjIK3z2\nT6anJ4xtz95T01/XdRSPm1q1dqc4liIrJMI9zNz+Ek0ZRpfcdDsNbNnGkR1wLAzTJNQOkM3m0dQO\nsqEhAevv7RKyqoLcxbFq6+vwLaAhoVo6ktSm7WRR1rqE6n7i7iwJDMxODTTYN5oi2dODq9Wit7cX\nWZZZWVvjRiZDPZFg/zvvMDQ09IpexQcbHh6iVvv3KK0u3ui9S9wM1WBnZC+xRi/LtTTzpdsUOhny\njWXq3Rya7Cdi9xLsRgl2w4wOJTFNh7wxR/KHP2Rk5CCdTou1tRVWV69x6NAxvve9tzGMRxdU2i4U\nRSHgDrBS+2bDJpfuIjWSIjWSot1q06g1sC0bRVUwPSaa65thunBsjVuXFsgsZbC6MWqVLr7gGNXq\nGt1uh3q9RKWSRdcL7N3r4Y03Tm674LSViFDwEnm9XtKbOD6RSDA+XuXmzVtY9gh+3zeFcmqtOpbL\nxDDunytQq5VYWDjLe+8NIlc83FhYYP9TvMk6jsPFuTmMXbte+RpoXdd5990j1OtfsrBwhcF977NW\nr3C2VSfeaWEoKv5GhXLHQVcM1lp1VhsqkuJmvrHEimLTiH+PFdlGamdJKl7CWgBVUmjbNqruotnu\n0FYVNJ+bSyu3WTLhp2O7OXDw4Ct97k9qYGCAcHiSfH6RWGwQWP9m5u+JUVi9RpJv3ij7o0MsmQ7t\nVha/FqJhVZEUGUftYFkNZEUn4PPQLreorVSQ410Ul7q+ckF2wHFAAkWRcSQHJAtXt4nH3aDjlHHq\nawxWB/hw149pdGpMrFzGdJUZjoQhGKTgOKSrVZqzs1i5HE2/n/CJExw7cmTLbEF9t2AwiM+nsNoq\n35nUejdJkgi7o4TdUcasXdTbNWqtAoXCPM2ag6mn0N1hZLlFX1+YdrtGrTWPbXeoVtfIZm+jqmne\nfTfK8eNHXrtd/RI9CaZnpx94n0t34dIfvpwyFA1x7H0/hWyB7GKeK1/MoGsW5XINRYFwWGPfviAj\nI8eIx+NbYshpOxOh4CUKhUJMaxr1Vgv3E/zRS5LE+PgOFOU2k5PTLFfXCIf70HWTUqOCHE6i699M\nMup0WqyszNBuT3PkiJ+TJ99hZWWFK7/4Bd6VFYY3sTe94zhcmZ0lHw7z1htvvLACMpvR09PDj398\ngt/+9hxnzy7j8oZIRBLkilnynSaX05M0Gw4uaZWVJhQsP13LpmP0EI+OM+IboGM3ydfnyTfmMVoZ\n3LZFq93B3fJRqHVpBMNorijs/ilOcY5isfqqn/YTc7vdHDjQx69/fYNQqPfOJjSx3l4mpqcp1b7p\nLYj647j9vahyAbvuwWzJtDUZWTHodqrIDqiai6jbh1mxKVlN7HAXl0dCdhQkaX1poiRBx7Zpd21M\nl4Hd7WJlmsQqEU70HMWv6iitPJavRSjaizTSz0I4TLPZ5FYwyLHjx+kfGqKvr++VzVl5EpZl0dub\nJO9fZm0tTSw6iCQ9eMa/S3HhMl0EzRDJwBCVyjK5/Dzl0i2CQT/1epVGo0axkaY09zmmucLOnR72\n7j1If3//tpgnsFmpvhSuCRfNevOxJaUfRFEUehLrZZH9ePjwvQ8JhUKoqophGK/la/aqvPp3+u+Q\nWCyGlkgwl82y+wl3fpNlmbGxUcLhIJOT86yuXqHVMblWzKMmxshm52i3G9TrRSQpRyIhc+TIGGNj\nY8iyzNDQEPVTp7j66adUZ2fZ3d+/Xj72EZrtNpfn5sgEgxz84IMttS6/p6eHDz/8HonEBf7v/+0q\nK5lrpIIjhHYcZUpRmZicxiJEVgqT8A8T8gSJBHrRNkKNSzFJ+HbS9QxT6xRZrOYpeCxcbjd2IMTw\n+EH8/iSaZtKxHJaWPluvpraFVx3cbf/+fczN/YaZmXPs2PEGiqLg9/vxDQwwOzHBPtNEkWUCniD+\n0BBW+SqplIvOjEOl2sTymKiqjW3XwJZRNJlerx9vQyebrlBzt5F9XTSXhLqxR0FprUOlIaMAUlNi\n2EwS6+lBXetSrtxCca3QF4W3+kYpJxL86M03WcrnMU2TH/7BH2yLb3ayLOP1eogk45iNGvn8Av5A\nLy7tcR9wMrLsIeAPMzzkJxTy0+40KRbr1Fptjn0wzNtvv0Ukcn99iddJMplkIDzA7O1ZRveOPtU1\nHMdhZW6Ffb37XnnP5etMhIKXSFEUBvbu5fYvfsHgE/YWfC0SiRAKhVhbW+PcxAR6SKO3r4zLdZlw\nWCeRCBKL7aG/v/++D7A9e/ZgmiY3Tp9m5dYthgMB+iKROxPPvlZtNJhfXWW+2UQeHeX4m2/Su4ne\nhZdF13XefvtNDMPFpX/zb+gza3QaNkFPkqVqlvmMzmD4IAPhPlT1wQFIlV2YSgRHM/C63eixOMnR\nETyeb4ZjXC6dVksmk8mQSt0/2XMrcrlcvP/+cVqt00xNnWF4+Agul8Hwjh1cXVtjamWFsd5eFFml\nf+AwC+cnkWWFHWODlG+kqVdyyCEXXdWh0+5gWRo2MiGfhNdyU2+7KK+2aToWHWy6HZtKWUFVwgSD\nIZIhlbjHS2Elg2NX8PcoJKMGoW4At8dD2+dD1zQWikVi+/dvi0AA63+7qVSUCWOWaDCAXbVZXZ2n\nhg+PJ4im6fcsi7WsLq1WjXqjiNtssWNHmEgk+k0BKccm6m1y6NChLRW6XxRZljl++DjLny6Tz+SJ\nxDe/Z0hmMUPADnDs8LEX0ELhayIUvGTj4+OkZ2a4cPMmb218m39SsiwjuVy0YzH+05/8ZFNVzIaH\nh4nFYkxOTjJx7Ro30mn0TgeT9Qp3daBjGGixGP179jA2NrZly6Z+7dChQ5RzOcoXL3Jy7yiGy0XT\nZ/Cv/t8mlmNSbbXwSvoDe0ba3S6Ta0VKpkG8v59E/8B9qyskqYppRigWi9smFACEw2F+/OM3+eyz\nc9y69Rt8vjF6egYYO3CAWxcvcnM5zUhPjOHYGEvRXcwsfkU8rjDSH6aBTk1qUVebdNx1KrUu3ZaO\nSzUxTQ3DVgl3XVgti1alRX7NouA2GElpRM0yAZcKcpGIaXN8LMJILEKpUKff7KEoSUSiUbLFImWv\nl93bYPLm3VKpCJbHy1qzwcGhHYRCJXK5IuXyApWKBLhYL/NlIcsddB0G+j1EIrF7agnYtk2ulsYY\n76Wn5+GbML1u+vr6OLHrBL+99ltkWSbUE3ric1fTqzTSDX5w7AdbbhOy140IBS+ZqqocefttviiV\nODs9zdGRkcd2538tXy5zdmWF0LFjT7Vm3uPxcOjQIfbu3Us+n6dYLK4XtwESbjfBYJBwOLzlq6N9\nTZZlTrzzDp+32/zu+nUOJZP0hn0YnjJBb4JGvU2t0UC1bTR5fZ29g0Ol02Gl3aYdDjO8Zw+9vffv\n2NZorKHrNXy+fsrl7TOv4GvhcJg//MP3GRy8wZUrE8zOTmDbQbwxk6WGzezkeTxOA82nUivJyO0q\nQz1hVtsqCZ9KJrdGvlyhK0k0nTq0mlgdDasjYTcc1DbIHXBiOh8cjNAXcaMo693fq7kmKc3P/oEk\nxVINr2UQCPtZlCR2RyJcWl6m5+TJV7KPxrPo7+8nNeBn6cYKI60aodB6tbxms0mr1aTVWq8RIcsy\nuqFjGuYDh53KlRxFp8gbb27NPTRepMOHD2PZFmdunqFUKNE/2o/ykN48gE67w/zUPHpd5/1D77N7\n9+6HHis8HyIUvALhcJgTP/oRX/3mN3x66xb7e3uJhx6emjvdLpPpNDOWRfj4cU68/fYzdbtqmkZv\nb++WHBrYLLfbzTs/+AEXgkFOX7yIXC6jqmt0pTXiqXGazSbtdptOq0W11aLSatPwu/ElE4yOjuJy\nPXgIZ21tklTKjc8XwLa3537smqZx8OABdu/exeLiImtra6yuVhgb85HLBWkVW+j1APXBo6xeuUJ7\nsUDdKkNXwZcK4VZ6USWNzGKG6vIKQUNFcytYWoe1Wpd2xODA3j4SPd8MuTRaXZSazGjIT6XSoFPs\nsr9niJlmE//oKFPZLNboKAePHHmFr8zTiUajHDkyyP8zV+Tm6gLHUjtRZAXTNJ/4w92yutxcuIh+\nYIgjR797m8fKsszxY8fpifZw+sJpps9NowU1AqEAbq8bRVXodrrUq3VKhRJWyWIgNMCbp97cVr11\n25kIBa9IT08Ppz78kEvnz/PltWt4VlZI+nwEPR50TcNxHCqNBoVKhWXbxuntZdeJE4yOjr7WE5Ke\nhmEYvHnyJAsDA1w6exbl/CIzy+epdkxM1YsNtBQVJ+TGEwiSikbx+/0PfR3L5UUMI8Po6HGy2RlM\nc3svD3O5XA+ss2DbNrlcjmKxyI0bN7jx+9/D5Us0asu4Ozo+vwdFVRjcPciCCnYmh21J1PQA5V4T\nI6igm2A5FoqkYFk2mUydHXIAudWh03TYFxkgZ9tk3W58koQyNMSbH3ywLb8hS5LEiROHuH17leun\n53CvzLCndwRFfrKeNcdxuDZzgbVQlz/5sz/5zlbbkySJ4eFhEokEc3NzTM5Mkl3Kku1k7/wuuV1u\nxkPjjO0bY2BgYMsPZb5ORCh4hdxuN2+98w753buZm51lfn6eybU1aDQAkNxufHv3MjY0xMDAwGu3\ndvl5kiSJgYEB+vr6mF9pcf58lVwujx4cRte9+Fw6hmE89sOoVstSrV5i//5+gsE42ewF/P4dL+lZ\nvFyyLBOLxYjFYoyPj/O9732PG9eu8et/+39y++Z5Qm0Hj2u9fLQSHOR2202lUSaQ9NE/FEF1ydTL\nZRrlKqrlkFtt0VM1iLkVYmqAZE+UyWKR67JMeHiY4MmTHDp2bMtXhnyUYDDIj350jEqlxeWraVpL\nt9gdG8TzgE3J7tbptjl/60tW3CW+/w/+jP0vaffHrWy9QNt6Rctms3lnZ8qvV8yIIPBqiFCwBXy9\nbStHj97p7pYkCbfbvW3G97cKRVHYt2+QWs1icNBmdnYKw9hLIPDooRLHsSkUJul0Jtm1K8bw8AHK\n5Rw+X/c7MTscwO/388Zbb7F3/34++fUnnLlyhjW1QawvRtDvod/QWF5eYm1ygna5hNIY2J6lAAAg\nAElEQVSR0WUf2VqXtXSZRFVnhz9KQAuy3LY4vbxMs7+fAx98wOHjx+nr63stermGh4f50z+FX7jP\ncPX8AqvpKYZNLwl/FJ/pvacEb73VYD47y83sFNJIkA///C946623XmHrtybDMF6bCo7bnQgFW4z4\n43h2o6ODXLp0gb6+t/H755mcvMji4gxe7xBudxSXa/2bquPYtNtVarUM9focwWCT/fvHSCbXV4Vk\nszPs3+8n9Ij5Hq8jr9fLH/30jzhy+AhnL55lvjBPp7leq2F4aBSfL0B65jbLi2nsXI0eu4+Tu99g\nKBaj0umQsW2caJRDBw5w7PjxLV2U6GkNDw/z538e5suxC5w+fYsvbucxFifwODZeScaxLaqdJlVa\nqFGDvX92kg8//MNtN7lS+O4RoUB47SSTSXbunOTKleuMj79DT08/6fQMS0uXKRah01E2qtF1cbls\nPB6ZnTtTxOMjuN3rJXbz+SXc7iz79n1310T39/eTTCZZWlpiKb1EejVNeaVMxImQGEzgGnZhaAYe\nw0CTZWRVZSgU4lAwSCKReO27fwOBAD/84fscObKf+fl5pqYWWVjI0mg0URQY6w0yNNTH3r17v1NL\nD4XtTYQC4bUjyzInThxiZeX3zM5eYWhoP7t2RRkdbVOvl2g0Kti2hSyreDwB3G4/yl37utdqJXK5\ny7z/fpJEIvEKn8mrpygKAwMDdyrIdTqdO7dvl8JDL9rXw3+HDx/GcRxs275nZ0BB2E5EKBBeS6FQ\niO997wC/+tUlZmY6DAzsR9NcBAI9BAIP/9aWz6fJ5S5x9KiXQ4e2x0ZIL9N2Kff8qkiSJOYBCdua\nCAXCa2tgYIA//EON3//+EtPTnxIIjBKN9qNp93drl8s5MpkZ3O4M772X4MiRQ1tiEyhBEISXSbzr\nCa+1RCLBhx+GuH79Btev32Ru7ga27UWWfUiSjGU1gRIeT4d9+3zs23eUZDL5qpstCILwSohQILz2\nDMPgyJHD7Nu3l5WVFYrFIuVyDdt2MAyNYHCEaDRKOBx+1U0VBEF4pUQoEL4zXC7XPZPmBEEQhHuJ\n6cOCIAiCIAAiFAiCIAiCsEGEAkEQBEEQABEKBEEQBEHYIEKBIAiCIAiACAWCIAiCIGwQoUAQBEEQ\nBECEAkEQBEEQNohQIAiCIAgCIEKBIAiCIAgbRCgQBEEQBAEQoUAQBEEQhA0iFAiCIAiCAIhQIAiC\nIAjCBhEKBEEQBEEARCgQBEEQBGHDpkKBJEn/WJKkLyVJKkuSlJEk6f+SJGn8MeeckiTJ/tY/S5Kk\n2LM1XRAEQRCE52mzPQXvAv8CeAP4AaABv5QkyXzMeQ4wBvRu/Es4jpPd5GMLgiAIgvACqZs52HGc\nn9z9syRJ/xDIAkeBzx5z+qrjOOVNtU4QBEEQhJfmWecUBFnvBSg85jgJuChJUlqSpF9KkvT2Mz6u\nIAiCIAjP2VOHAkmSJOCfA585jnP9EYcuA/8V8KfAnwALwKeSJB162scWBEEQBOH529Twwbf8NbAH\nOPmogxzHuQXcuuum05IkjQI/A/7iUef+7Gc/IxAI3HPbRx99xEcfffRUDRYEQRCE18nHH3/Mxx9/\nfM9tpVLpqa8nOY6z+ZMk6V8C/zHwruM4809x/v8MnHQc54GBQpKkI8C5c+fOceTIkU23TxAEQRC+\nq86fP8/Ro0cBjjqOc34z5266p2AjEPwRcOppAsGGQ6wPKwiCIAiCsEVsKhRIkvTXwEfAT4GaJEnx\njbtKjuM0N475J0Cf4zh/sfHzfwvcBq4BBvBfAt8DfvhcnoEgCIIgCM/FZnsK/hHrqw0+/dbtfwn8\n643/TgD9d93nAv4ZkATqwGXgA8dxfrvZxgqCIAiC8OJstk7BY1crOI7zl9/6+Z8C/3ST7RIEQRAE\n4SUTex8IgiAIggCIUCAIgiAIwgYRCgRBEARBAEQoEARBEARhgwgFgiAIgiAAIhQIgiAIgrBBhAJB\nEARBEAARCgRBEARB2CBCgSAIgiAIgAgFgiAIgiBsEKFAEARBEARAhAJBEARBEDZsdpdEQRBeQ47j\nkM1mWV5eJpMpUijUcRwHt9tFIhEgFushlUqhadqrbqogCC+QCAWC8B2XyWT46qurzM7WaTT8uFxh\nTHMAkCgWm0xPl5CkayQSNzhyZJSxsTFkWXQyCsLrSIQCQfiOchyHy5evcObMHNVqjETiKF5v8IHH\ndjotMpnb/Pznk+zbt8I775zANM2X3GJBEF40EQoE4TvIcRzOn7/A736Xxuc7wNjY4COP1zSdVGoX\n9XqSixfP0m5/zgcfnMQwjJfUYkEQXgbRBygIQKfTodFo0Gq1XnVTXoq5uTm++GKJYPAIsdijA8Hd\n3G4/w8Nvc+2azVdfXcBxnBfYSkEQXjbRUyB8Z+VyOebm5ljKLJGv5LFsC1mS8Zk+kj1JhgaHSCQS\nr934ebPZ5PTp69j2IJFIctPn67pJMnmIixdPMzCwwMDAwAtopSAIr4IIBcJ3TqVS4dz5c9xYvEHV\nqeIOufEkPBiagW3Z5Kt55hbmODd1juHoMCeOniAej7/qZj83s7OzLC5K7Nix56mvEQj0sLqa4MaN\naREKBOE1IkKB8J2ytLTEp6c/Jd1IkxhNkAqn7jsm1BMCoFFrMDk9yfIny5w8eJI9e/YgSdLLbvJz\nNzGxgK6nUJRn+/OPxYa4ffsLCoUC4XD4ObVOEIRX6fXqFxWER1heXuZvf/e35JQc40fHCYQDjzze\n9JiMHRhDikt8cv4Trl+//pJa+uLU63VWV5sEArFnvpbPF6FWU1hbW3sOLRMEYSsQoUD4Tmg0Gvzu\nzO8ou8oM7xre1DyB3lQvZtLk95d+TyaTeYGtfPEqlQr1Ong8jw5ET2K918RPpVJ59oYJgrAliFAg\nvNZs2yaXy/E3P/8bPr/6ObZjszizSD6Tp91qP/F1elO9VLUqX577Etu2X2CLX6xut4tt88xDB99Q\n6Xa7z+lagiC8amJOgfBa6na7TE9PM3fjBuXZWa6dO02f18FTKdMElhWZeb8X72g/fSMpDI+BYztI\nsoQsPTgrp0ZT3L56m3Q6TSp1/1yE7UBRFGQZLKv7nIKBhaLoz+E6giBsBSIUCK+dQqHAhS++oDUx\nQb+mMQDIEZPkWPLOsEG702VxNcetv/0tn2gyajxAuCeApMjofj/eUIieaA9+v//OdU2PScfoMDc/\nt21Dgc/nw+2Ger2My/VshYfWaxSU8flen5UZgvBdJ0KB8FrJZDJ89Xd/R3BlhTcHB/EYBhMTE0i6\ndCcQtDptMsvLdHN5xlpNetZaLK7mUXf00Z+K0lhZoTQ3T940cCf7GB7bgcftAcAb8JJeTb/Kp/hM\nPB4P4bCL5eVVgsFnm2xYra7hdncJhULPqXWCILxqIhQIr41KpcJXn3xCbHWVo3dt2lOulXHprvX/\nrpTJzM2hVir0eb24fREkJAarDS4tFmgFgwz2rX9Ylht15qenuV7IM7BnL/F4HNNjUlmr0Gw2t22J\n3127+pmZmceydqEoylNfJ5udZXzcLZYjCsJrRIQC4bXgOA4Xzp7Fs7TE0fHxe1YXWJaFJEuUKxVW\nZmbwt9vEwhFk+ZuaA1GvyViny42ZJUJBD16Pid90s6fPYDGXZ+7iBTh0eL3AkWNv68mGQ0NDJBK3\nWVqaYGDg6QoYVSoFZHmJ3bv3PVXtBtu2WV1dZW1tjVKpTKvVRdMUAgEfoVCIeDz+2lWSFITtQIQC\n4bWwvLxM6fp13kml7vsw0VSNVqPFWm4FX7tFPBhE4v4Psv6gl+xygcWlHLvG+wGQJZmBnh5YXWX+\n+jUSI+MYsoGqbt8/HbfbzRtv7OTnP79BsRjd9DBCp9NicfECJ06EGBoa2tS5juMwMzPDtWszLCw0\naTYNwI+iGNi2heOk0bRpUikXe/cOsWPHjmfqzRAEYXO27zubINxldmqKSKtFyOu9776gP8i56bME\nnBbxcPiBgQDW1933+0wuLudpDsYxNoYcAFLRCOWlNLeu3uDUzu/jcrkeeI3tYnR0lBMnCnz++Vks\n6/AT74HQbNaYnT3Lzp0WJ04c2VQvQb1e58yZc1y+XEKS+onHh3G7/fcd12zWWF6eZXZ2ir1707z1\n1tF7JnwKgvDiiP45YduzLIvC3Bx9weAD75dlmdZqmaCu3zNk8CBRj4Gr3qRUrt97DUlmIBKmOLOI\nz/A9t7a/KpIkceLEMd59t5dG4xzT0+dpNmsPPd6yuiwvTzM///fs3Wvxgx+cxO12P/Hj1Wo1fvWr\n3/PVVx1isZMMDx98YCAAMAwPAwN76et7j8uXFf7Df/g9xWJx089REITNEz0FwrZXLpdxqlWCj5gF\n72/LdDvWY6+lyDI+x6HeeMAWyl0IVJzXYv8DWA9Lx48fJZns5cyZqywuLtFuR3C7QxiGdz1MtRqU\ny3nK5Wnc7jLDw0HC4SFmZ2cJBAL09PSg64+uU2BZFp999iUTEyqjo2+jaU9W18Dt9jE29jZTU6f5\n9NMv+clP3t/2PTSCsNWJUCBse61WCzodjId8YDRqNUYDUVbLJdq+Li7t0b/2pgSFzr1V+mzbIb1U\nYH8wBc3mc2v7VtDX18cf/3GCdDpNOr1MOr1IqdSk2WxRKGSo1RrYthdJGmJpKcjCgk2zeZtOJ4fb\n3SQclunt7UXXdTRdw9ANAv4A4XCYeDzOrVu3uHatzuDgqScOBF9TFJXh4WNMTX3KlStXOXr0yIt5\nEQRBAEQoEF4Dj/vm3igWGYrFMMoa85kcyWT4scMId1/TcRzmF7MkCHFkfJTpXA7btl+r2fGyLJNK\npe4UZZqamuLv/u4M+bwbXe/D640gSQqlUoNitUbTtsiurpHJX6PUmcfwV+ntD5JKpIiGowTNIIZk\n0OvtZWGmiGG8i2neP9/jSbhcBuHwHi5dusSuXTvxeDzP86kLgnAXEQqEbc+2bYqNBjMLC4Q9HnRd\nx+PxoGna+v2Whaoo7OkboDXXJZ0uEIsHHtpjUHXA5Vq/z7JsZhez+Gsm74/vXw8Ltv3ahYKvOY7D\nr3/9a/7dvztDJuPHcUza7Tyd0g1KxSz1bgHbkMGsYfRIRA72kwgNU60WaFtLFPUilmOhulQiiQjX\nZ65z8doSBwdT9PT0P3UwiERSTE5eZ25ujj17nm4ZpSAIjydCgbAtdbtd5ubmuHlzlnS6xqVrq1Tq\nTRL+MJrmYBjQ2+slkYgjKwq24+DWdQ4PjnB9aZ6FpRxmQMfvM1HVb5a8dSyLqizTY7hYzZfIZysM\nKD28s3MPfZEIc9ksksv12iyTcxyHarVKqVSiXC7zySef8stfLtJspuhxqYTaJdyNOo1yFVQd1Z0k\ntzbHSrHIWtkiYzVJHT1AKJqkWtaplueJJnQWq4uUp8r4dT/ewQHm29foXGtycM8Pcbs3P1FTlmVU\nNc7KSh6RCQThxRGhQNh2VldXOX36IpOTbRQlSTi8n8F9Pdg3PqOvbxftdpNms8rUVI65uWmwy5it\nOslweD0YDI3Skw8yW8iwWipjuWxcLhVFllkqV1lEQk6X6VEDvBvZw8GhYcyNyXSlWg3fwMC2n2zY\n6XSYnZ1lYmKOdLpBsdji2rUJLl4sY9UlxtQJ+r0BegNJyl0Jd8CN6dYp5BcJB0IkfAPUGiUWp2dY\nLnxO6K0DhFIp1nINMotZxvb3k8/kmbkxT8T7FomBUZanp9EmDA4f+PFThSqPJ8jKShrHeX0mewrC\nViNCgbCtzM7O8utfX6FY7GFg4CC6bgIgywq35y6TLeeJ+SO4XAZ+f5R6vczMzJc0i9MMRqN43G4U\nWWawp4e+cJhcuUy12aTYqNJsdajWWpzYvY+3RnfTF4nguauUseM4ZFstYvHtvQFQNpvlzJlLTE62\nUdUUoVCCdPoKhcIAulVgn14nZezEbje5PbOEbLSJ9fVRq6zRtMvoQR+yLOPzhthlHsK/ep25z88h\nvasSiCdYWy1RzBWJp+LcmpjDWVsgmRwjNjTEwuRNehYHGBzct+l2a5pOq2XT7XbvDA0JgvB8iVDw\nmnEch2w2y8rKCqurJdbW1tfbe7068XiAWCxGMpncluPhy8vL/OpXV2i1Rhgb23vPfX5/BPfIYSav\n/j0Btw9dXV+J4Hb7GR19k+unl7h8c4pdY8O0ul0a7TaWbSNLEl7DIB4MMlUqsXNwlPdPnLjTM3C3\nbLFIIxBgYGDgpTzfF+FBoWpp6Rbz8xVKuQrjnQI7oodQZJWGU8OSWjjdCrmVZSypihrQ7/ndkRSF\nZGwPUuYi8xcuYr73LqoWIbeyTCQRIRgLkL+9Qqm8SijYixn1MLN8kWRybNMrERzHRpLYlr+7grBd\niFDwGllZWeHcuWvMztZpNHy4XCF0PblxX4Nr14q4XBdIpa5x5MhOBgcHt003bKvV4vPPL1GpJNix\nY+8DjxkaPsiNYoYrizc50DuKS13/NmmaXjy9Y3xx+ZcUchl6fF48koTiOFhAAZhpt5kLBHh3fPyB\nSxsty+JaJkPkjTcIPqRI0la3vLzMJ59codn8JlRZVpeZmWmKRYtgcYER/x4UWQXHptaoo+kGLsNP\nZW2WFmXCkftLIkuyQjSwg1b2AqtTUwR37aBWXaFVb+Hzu8loZZZXbqOgIckyy2tTLC5OMDx8YFPt\nbzarJBLGazOfQxC2ok2FAkmS/jHwnwC7gAbwOfDfO45z6zHnvQ/8M2AvMA/8D47j/O9P02DhfrZt\nc+nSZb78coFaLU4icRSv98EfXM1mjcXFKZaWrnD48DJvvHFsW3TF3rp1i9u3JUZGHv5Bomk6Y/u/\nx6TjcHZpgl3BOAHDw0p6Cld5lbjqxiyssSfWg3ejGl/TsrhYLGIZBuNuN6uTk3ze7XJkbOxOb4Hj\nOFyem6PR18cbR4++lOf7vLVaLb744jLlcu89oSqfXyKfb0M1R9LR8OjrVQa7XYtOt43m0ZAkGVnz\nYzX9NCp1vGE/fKtUtMv0E27EqSwu0h0coNtR1neTzNewZpcp14rUgstokoxTKDCRbVFemSHSv4tY\nbAiX6/E7TtZqeRKJ7RnIBGG72GxPwbvAvwC+2jj3fwR+KUnSbsdxGg86QZKkIeD/A/4a+AfAD4D/\nRZKktOM4f/eU7RY2OI7D2bPn+PzzLIHAIcbG+h95vGF4GB4+SLncxxdffEWr9QXvvffWlg4G3W6X\n69cX8XhG0LRHV7QzTS+7Dv+I2UCMM7e+xLn696TqZXYF4/h3HGNx6iy30svEE71kOx3Sto0rEuH7\nySRxr5d8vc6FW7f4rF7n7QMH0DWNy7OzLPn9HDl1atuukZ+ammJmxrkvVJXLOapVB08th1/rAWm9\na77b7WLjbHTVO1hWB80M06rm0d0ttG9vGy1J6FqYcC1LJpen3q2R+2KBRKtDrNPChcJOnxePJ8Ca\nrKDUGkTyiyytTHE90kfv+JvE40MP7blqNKq4XAVSKVG8SBBepE2FAsdxfnL3z5Ik/UMgCxwFPnvI\naf81MOM4zn+38fOEJEnvAD8DRCh4RlNTU5w5kyESOU4o9OQT4Pz+KKr6Nhcvfk4odJUjRw6/wFY+\nm1wuRybTJZl8dOD5mstlsGP8BGdyCzTTNym64lywLZR2g7IvwueVWXoLBZKRCPv7+xkOBtE2uqQj\nbjfvulx8trDA39TrBHp6sIaGOPreeySTT7Zp0FZjWRbXry/gdg/eN45fLJawbZuAY+GSv7nPtq2N\nzgAJHBsHB0XVsTpeWvXK/aEAUDQDvaVSm54i0C2zf0BnZKiXrEchPVMBZ30Oh667cLVVRmODDNoW\ns7kFZr/6G2q73mJk9MGbLKXTNxke1kkkEs/75REE4S7POqcgCDisD8s+zJvAr751298Cf/WMj/2d\nV6vVOHPmFqo6uqlA8DW32084vI+zZy+QSvURi21uC92XpVQq0eno6PqTb8CTTk/izy/yg72nMDSd\nWrNGo9Oi1apTq06wcziAUi5TqVa5ncng0XUUWcZ2HOqtFqZlMTs/T+rQIf74pz/d1OY/W00+nyeT\n6RCL3R+q6vUGrXoOzW7TsEu4OgF0zc29wwMb/+04KJqbbr2EHby/eJMkKzi1FuF6ntFBL8l4AFmW\nCIeDrM4XqNdL+HzhjSWF6+eqssKO2BCBSp4r13/HnKIx9K25BrncIoaxzIkTx8QkQ0F4wZ46FEjr\ncf6fA585jnP9EYf2Aplv3ZYB/JIk6Y7jPGDnGeFJzMzMsLysMT6+86mvEY2mmJiYY2JiesuGgnq9\nDjx5t3232yE3c56dmoF3I0gE3H4CrM+/yFgZxkZH8Hq95HI5quUymbU1rG4XWVFwp1Kk/H7+oNtl\nQZK2/cS2UqlEq6XdqSZo2zaFQprl5Tlu3LjM0nwJq93CabRxVSv4DBc+2cC2FEwMkCQUWaVjN1F1\njW5Lwe50kfV7h3I6zSZ6vU5PUMHtVu9sXqQoCsGAB8kqU60W6bbbmK7ee87t8UXYbVlcuXWGYqiX\nYHD9dzGfT1MsXuT99/tFL4EgvATP0lPw18Ae4ORzaouwCbZtc+PGIl7v8DN/e4pGh7h16zxHjtS2\n7Zj53XK5RVxrKyR7Bh94v+Osz8UwDONOrf8HSXS7LN6+zfz8PGNjYy+quS9co9EA1sNRtbrGrVsX\nWVqqYlk9aNpxZLmI33DQFJ1yrUW5bbPaWcRqL5BSK0TdKVRFp23XkWQVx5ZwbPuex3Ach/ZaHp/T\npu2omKaNoq2HqU6rQ9gfJh7uYXk5SzFXJ5XcfV87E8EYufQkC1Pn8Bz8gKWlG8jyPO+918fBg5tb\nqSAIwtN5qlAgSdK/BH4CvOs4zvJjDl8Bvt23HQfKj+sl+NnPfkYgELjnto8++oiPPvpoky1+/VQq\nFdbWugSDz15IJxCIMTcHa2trWzIUrG/Nm3/i48vFDFHbvrMk8W7dbhtN44m24NVUlZgksbq8vK1D\ngeM4AKyuLnD58iVKpQA9PafQdT+qOkc6fYNOs07YE6DdrKNpASRXPyudSabXblG3pujV+5DqMo5l\ncffQQrdj0Wm3aFSrUMrhGHVKLZtmExZuL+Dxeui2uyT9SZKJJKqcxc7VaLXSLC9LuN0BDMODLCvY\ntk1Y07l67be0pQJ79oR5440DDA4+ONwJggAff/wxH3/88T23lUqlp77epkPBRiD4I+CU4zjzT3DK\nF8Affuu2H23c/kh/9Vd/xZEjYrbxg5TLZWo1iMf9z3wtVdWwLDflcvk5tOz5CwQCKMo0nU7riQre\nNIsr+B4y/6DZqqHrPPEcgYDbzdTKyqbau9UYhkG5fI25uRLN5iB9ffvvTObz+cK43TLlWoekpuJ2\nK1RrVUzTT8Q9wlrNw0rtJpKzRFAJ0G7UkJT1XoJ6tU6z3cLBotOpElKKdDULd5+GJ+Gh0+mwsraC\nXbaJ6lE63Q7tWoc3Dx+jL5liOb1KvlCgUgHbXl/44DNgLFAgdcTHj3/8/Y1AKAjCwzzoi/L58+c5\n+pTLpzdbp+CvgY+AnwI1SZK+/ppachynuXHMPwH6HMf5i437/hXw30iS9D8B/yvwAfBnrPc0CE+p\n2+3iOPJzHO/W6Ha7z+laz1c0GiUalcnnl+jtHXns8Vaj+sBeAoBqJc/wsPuJl2CaLhfden1b74po\nGAaLi9NY1vdJpfbfM7vfNH309saZXl2l0irj9wXodss0GlUM3YNHC4K1i0zzMoa7jtqysdUG9YZN\nly6KrqGoKla+iKquUfTa9A6G0AwXmuHQ6Xbw6l4KrQIXL1xkyDfE+I5xfD4fvfE4lmXRaDSwLAtZ\nljFNk56FBUputwgEgvAKbPZd7h8BfuBTIH3Xv//srmMSwJ1pzo7jzAL/Eev1CS6yvhTxv3Ac59sr\nEoRNUBQFSVrfwvf56G7ZCXW6rrN7d4Ji8TaWZT3+BFlenzjwLa1WHVkukkw++ZCL4ziwTao+Pkw2\nm6XZ9GMYfQ9c7tfXN4oZCbBUW8GRHAJBH4bepdmq4HKp6LIXyRoi22pg2106jRrNTgPNo6OoMu16\nEaczS9eoQ5+XUNgDONTKNQzZIJFMoOs6xVwRu23fE8gURcHr9RIIBPD5fKiqikfXqa+tvcRXSBCE\nr20qFDiOIzuOozzg37++65i/dBzn+98677eO4xx1HMd0HGfMcZz/43k9ge8qr9eLaUKjUXnma1mW\nhSTV8fk2v6Xty7Jz5zjJZJOlpZuPPVbzhqh3mvfcZts2q6sz9PebRCKRJ37carOJEQhs216CdrvN\nrVtZRkYO0GqtYVn39waZppddu/ZTNlUWCtOoqkI47MfnlXBooEo2ph2hUFEoNBZRFA80LOr5AvXi\nMt36BPjylOMeYoMhJMemslbB5biIBqJUs1WkisyB/Qdom22mpqfuzHN4EFmW75vIKAjCy7E93+kE\nAoEAgYBMuZx75muVyzl8PmdL1/T3er28+eYuYIZsdu6Rx5rBXkrtb+awOo5DJnObUKjB2NjmVmsU\n6nWC27RoEazvh5HN2uzZc4xYzCaXW3jgcbHYIDsPHCNjdJnJXsFyLAIBP6GQG8O0UKjh1GXy1Xlk\nq4RSL2OtztMpXKBtzLFgKjS9KlK7SSVbQW/pmF2TzmqHoBxk5/g48VScSCLCbHaWfP7hE0cb7Tau\nLTjhVRC+C0Qo2KYURWHnzgSl0twjv3U9iVxujpGRAH7/s09afJFGR0c5dWqYZvMyc3NXHzqUEA4n\nKOgm1WaNTqdFOj2Bz1fg4MFRvF7vEz9erdmk4HKR2MahoFQqYVlevF4fO3cOoKqrFArpBx47MLCb\nfSc+oBwxmMifZyFznVJ+CbVVI6C2iXsV/EGDeLBC3J+mL7aMJ1BjqeUw03VwVpqoGZVwJ0xci5Py\np9g5spPxPeN4/euvu9vrpqt1SS8/uA0AxUaDoKhJIAivhNglcRsbHR3h0qXfkcncfqIJeA9SKq2i\n6xl27ty6ZY7vtm/fPtxuN6dP32BycgW/f4hIpA9dN+8cEwjEmPRFuDB9jtGQm4ojMVEAABKBSURB\nVL6Uyq6dOzcdeiaWlnANDGzb8sYAlUoNWV4fFurp6WH//hZXry6SyTSJRgdQlHvfAuLxQfz+P+Hi\n+V8zN30Fb7OO2wFD7SJrNWy9iRauYHo1Ku4EobCXPxnsZaVQpHj5NsP9QwwOD2G6zYf2yPhCPlZy\nK+xs7bxvMmGj1WJNVdkfjb6Q10MQhEcToWAbCwaDnDgxzC9/eROfL4LHE3j8SXdpt5uk0xc5ebLn\nkUV8tpqRkRHi8TiTk5Ncuzaxvs6+4wJM1qtu13CH29QqbZL9QY7u3bvpSZTLhQJLus7hEye27XwC\nANt27ml/KpVC13UmJuZZXi5iGDF8vjAul3lnEmKxWMbv+AgP7KfdWcaQi5hYzJcbaG433d1BXMkI\n42E/oaAPWZboS8a5XGpRWs6Q85n0Dw09tE2mxySXyVGr1e4LBTOZDEoySV9f3wt5PQRBeDQRCra5\n3bt3k8sV+eqrL0gkjuP3P9kkukajytzcl+zZI3H06KEX3Mrnz+PxcOjQIfbu3cv/3969xsadXnUc\n/56ZsT32xPb4FntsJ3acmx3l6iTrpN5Nthe6pVKhRaigFtqqtKUgRAEhQWlLqbi0AhUWKPCGQlEL\nW5W+qFqpXaotu8puN80mZLO5O4kdJ47vd3t8G8/Mw4uZ3Y0TO/Y4l5nx/j6SX3g8//Hxoxn/z//5\nP885IyMjjI2NMTc3h5lRUFBLMNjCzRs76Tl2jMGJCapKSlb82oPj45weGqL6yJGsSpYW4/fnEI0u\nXHRZUVFBcXExvb29dHX1Mz7eQyTiAXKZmZlm6OZVKnPj1IfyqS3fQFXJbnqGh5m5FSdYOsnuA2UE\nChY2RMrLzaFiywYmzkwz2d3HSGER5WWLX+37fD5ixJidXRjXaDjM9WiU7fv24fPpX5NIOuiTl+W8\nXi+trS14PCc5c+ZlxsYaCIW2LFnkJxaL0t/fSTjcxq5d+Rw58jb8i3S8yxY5OTlUVlZSWXn3NsOS\nkhLi8Tgnjx9n08QEjbW1+O4xYxCLxbjS00N7NMr61lb2rbL4RyZJVAS9lmxC9OZ2xNzcXOrq6qit\nrWVqaopwOEw0Os+Viz3Ux2D3xnoCfv8bx5gZsXiEQCBOvn/x99aG6nIujIzTf+UGnq4ugsEgPu8S\n/2KMBWthpmZnOdXVRfHBg2zZsuWB/f3pFolEmJ2dxczw+/0Z3aJcBJQUrAk5OTk88cRhamo6OHmy\njc7O60AlgUAQv38dZpboDjg1RizWT0VFjMcf30RjY2PG1iZ4EDweD83791NSWsrlEye41d7OBr+f\niqIiigMBfB4P0XicielpBsfH6ZqZIVpVReOhQ2zevHnRPf3Zpry8nMLCy0xMDFFcXHHXz71eL0VF\nRRQVFTExMUFRPE7jhg2sy89f+DyPh9mZUcpLDY9n8XHxej1s3V7H5cg8l67dJL+sgk0b7p5pibs4\n5uyN2YD+0VFe6+/Ht3s3Bw8fzvpxn5iYoLOzk85bnQxPDhOJRsAgz5fH+uB66mvrqa+vz+rOm7J2\nKSlYI8yMzZs3s3HjRrq6urh1q4++vmtMTUVxDgIBD1u3FhMKNVBXV5fVswOpMDMaGhoIhUJ0dnZy\n89IlOkZGYHQUYrFEoaOCAnKqqtjQ2Eh9fX1G9n9YrZKSEhoaijh7tn3RpOB2o6Oj5M3NUrTIIj+z\nKH7vMMHie69byffnsmP3Vl6MzPJSzwCz+KguLaao4M1Zh8hsBJ/lMB2L8crVq/Tn5bH+8cfZ29yc\n1VUMI5EI586d49UrrzI6P0pBaQGBUIAifxHOOeZm52gfb+fiyYuUnyvn4M6Daz4xl+yjpGCNycnJ\noaGhgYaGBpxzyXLIjpycnKy/Arsf+fn5NDU10dTUxNTUFJOTk0Sj0TeulAsKCtbs+OzatZ2OjpMM\nD3dTVrb0Ar6pyUkCnrtPUHEXZzR8ky3rHS6+/PbXvLwcdu7YxLnwLF3lIbp6BskbHKHQgc9gcHiM\neHwdMecI7tpF844dWb+wcGJighdeeoG2wTbK6srYXrX9rvdTIYWUV5UTi8UY6B7g2VPP0t3XzZHW\nI2+ZJF0yn5KCNczMdA9zEYFAYE3NBiynqqqKAwdqeP75s+TlBVi3bvEiVZFwmKI73i/OOW4MXCVU\nOkRr5R5eHrtMLBTHu8yOjPy8XIrN2H5oF/Mz84QnwsxMzRCOzDN4pYenDj5FS0tLRhfMWqmpqSme\nO/YcHRMdNOxrIDfv3h04vV4voY0hgmVBzlw4Q/zFOO84+o4Vde4Uediyd6+ViKzYnj27OXiwiJ6e\n4wwPd6/omPlohPa+ixTld/KO3RvZ29BAraeMWz0rr6JpGIXBQkIbQzQ0NZDnz+PQzkMcOXJkTSQE\nzjlOnjrJtbFrbN69edmE4Hb5gXw27dzE+Z7znDt37iFGKbJySgpE3gJ8Ph+trS08+WQlc3OnuXLl\nZ4yNDSzYAZBbUMDc/Dzz0Qg9Izfp6HuFuvXdvGd/HTVlZQT8flrqt2NjxuDwvfu1R6JRLCcHX86b\nk5ED3QP4Jn207Gsh/46FjNnq5s2bnL1xltqttQv+1pXyF/gpqy/jVNsphobuv2S5yP3S7QORtwif\nz8f+/c3U1FRz/nwb7e0nGBjw4VwRXq+fwdFbhPtPAQVUBqMc2l5MY+0O8m67pdBQVcUTMzt44dZ5\n5iJRqitLF92NEJ6ZxV9bi9fjJR6P0329GzfseLL5Serq6h7hX/1wtV1rIx6IUxhcfTOx8qpy2rrb\naO9op1yVHCXNlBSIvMVUVVUl1xmMMTQ0xPj4OHNz84yN5dKRF+ftoUK21dSQs0QBoV319fhzczl+\n4zJXxrspqyiktKTwjXUGsXickWiUspISBnsGGe4eJuQPcejwoTVVg2BiYoLr/dcp33T/J/JgZZC2\nzjaa9zVrHZCklZICkbeoYDC44L6+c46fxGPMXL26ZEIAiQWs22pqqAwGudjVxaX+Ljp6+nB5DvMZ\nw+FJeqOQdyPMuuJ1PLH1CXY07cj4hlupGh0dZWp+isriuwtnpaowWMhQbyJB02yBpJOSAhEBEif7\npn37ON3VRe/ICKHS0ns+vzgQ4HBjI7tn6xkcH2dsaoqR8CSnZ/vYe+QoBw8eZP369Wu2SE84HMb5\n3AOpM5AfyGc2Oks4HFZSIGmlpEBE3lBTU0Pv/v28euwYeTk5lBYuf6884PcT8PuZjUQ43tHBvp9/\nL0ff/e41378gHo8/sKXaZgaWfE2RNNLuAxFZYN/+/QQfe4yf9ffT0de3YIfCUgbHx3mxvZ1oYyOH\njh5d8wkBJAqFEX0wrxWLxTCnuiKSfmv/kysiKfF6vbS0tnKptJQLJ07Q1dZGfWkplcEg/tsK7MxH\nowxPTnJjaIiBvDwqWlvZ09y8ZrYbLqe4uBif8zEfmScn9/5O5tOT0wRyAskGViLpo6RARO7i9XrZ\nuXMn1dXVtF+9yrnLlznb3U3e/Dy5JC6QZzweKCykeO9e9m3blvVtplNVUlJC0B9kdHCU9TXr7+u1\nRodGqSysZN26dQ8oOpHVUVIgIksqLS2ltKWF2T17GB0dZWJigmg0isfjobCwkGAw+JY9kfn9fhrr\nGzl29RgV1RWr7p0Ri8aYHpqm6UATnmXKR4s8bEoKRGRZfr+fUChEKBRKdygZZdvWbVzouEBfVx+h\njasbm5vtN9lQuIGGhoYHHJ1I6pSWioisUklJCS27WpjqnWJidCLl44f6hvCOe9dU6WfJbpopEBG5\nD01NTYyNj3HiygkidRHKq5avM+Cco/dmL7N9sxzdfZRNmzY9gkhFlqekQETkPng8Hg4fOky+P5+T\nl05ydeAqlRsqKSq5u4Kjc46xoTEGugYotVKOHDxCY2NjGqIWWZySAhGR++TxeGhubqa6uprXzr9G\nR3sHvfFePPke8vx5OOeIzEZwM46inCL2h/azZ/ceSpepGinyqCkpEBF5QF5vNjU0NMTg4CDDI8OE\nZ8IAFFcUU1pSSmVl5YKeEyKZREmBiMgDVl5erh4GkpW0+0BEREQAJQUiIiKSpKRAREREACUFIiIi\nkqSkQERERAAlBSIiIpKkpEBEREQAJQUiIiKSpKRAREREACUFIiIikqSkQERERAAlBSIiIpKkpGAN\neeaZZ9IdQlbSuKVOY7Y6GrfUacwerZSTAjN7wsy+b2bdZhY3s19Y5vlHk8+7/StmZutXH7YsRh+e\n1dG4pU5jtjoat9RpzB6t1cwUBIAzwG8DboXHOGArUJX8CjnnBlbxu0VEROQh8aV6gHPuWeBZADOz\nFA4ddM5NpPr7RERE5NF4VGsKDDhjZj1m9mMze9sj+r0iIiKyQinPFKxCL/CbwCkgD/gk8IKZPeac\nO7PEMX6AS5cuPYLw1o7x8XFOnz6d7jCyjsYtdRqz1dG4pU5jlrrbzp3+VI8151a6LGCRg83iwPud\nc99P8bgXgBvOuY8u8fMPAf+56sBERETkw865/0rlgEcxU7CYV4DWe/z8f4APA53A7KMISEREZI3w\nA/UkzqUpSVdSsJfEbYVFOeeGgZSyGxEREXnDy6s5KOWkwMwCwBYSiwcBGsxsDzDinOsysy8D1a/f\nGjCzzwDXgQskspdPAm8Hfm41AYuIiMjDsZqZggPA8yRqDzjgq8nH/wP4OIk6BBtue35u8jnVwDRw\nFninc+7YKmMWERGRh+C+FhqKiIjI2qHeByIiIgIoKRAREZGkjEkKzOzTZvaamY0nv142s/ekO65s\nYmZ/nGw49bfpjiWTmdkXF2nSdTHdcWUDM6s2s2+a2ZCZTSc/s83pjitTmdn1Rd5rcTP7x3THlsnM\nzGtmX06O37SZXTOzz6c7rkxnZuvM7Gkz60yO20tmdiCV10jXlsTFdAF/BFwlsbPhY8D3zWyvc07/\nsJdhZgeBTwGvpTuWLHEeeCdv7qKJpjGWrGBmQeCnwE+Ap4AhEo3ORtMZV4Y7AHhv+34X8GPgO+kJ\nJ2t8DvgN4CPARRLj+A0zG3POfS2tkWW2rwM7SNT56QV+HXjOzJqcc0uWAbhdRi80NLNh4A+dc/+e\n7lgymZmtA/4P+C3gC8Crzrk/SG9UmcvMvgj8onNOV7gpMLOvAIedc0fTHUu2MrOngfc657alO5ZM\nZmY/APqcc5+87bHvAtPOuY+kL7LMZWZ+YBJ4X7Jx4euPnwJ+6Jz705W8TsbcPridmXnM7FdJ9Ep4\nMd3xZIF/An7gnPvfdAeSRbaaWbeZtZvZt8xsw/KHvOW9DzhlZt8xs34zO21mn0h3UNnCzHJIXMF9\nPd2xZIEfAe80s60AyVo4rcAP0xpVZvORmJWau+PxGeDxVF4kY5jZTuA4iSJH08AHnXPX0htVZksm\nT3tJTK/JyvyMxO2pNiAE/BlwzMx2Ouem0hhXpmsgMRv1VeAvgceAfzCzOefcN9MaWXb4AFBMoqaL\n3INz7p+TiXqbmUVJXMB+zjn37TSHlrGcc2EzOw58wcwuA/3Ah4DDJG7Lr0hGJQXAZWAPiQ/OLwPf\nNrOjzrlX0xtWZjKzWuBp4F3Oufl0x5MtnHO31wM/b2avADeADwK6VbU0D/CKc+4Lye9fSybynwaU\nFCzv48CPnHN96Q4k05nZ7wIfBX6FxJqCvcDfm1mPEtB7+jXg34BuEuukTpNoGbB/pS+QUUmBcy4K\ndCS/fdXMHiNxZfKp9EWV0fYDFcBpM3t9wZwXOGJmvwPkuUxeNJIhnHPjZnaFRPluWVovcGc/80vA\nL6UhlqxiZhuBdwHvT3csWeJPgC855/47+f0FM6sHPosS0CU5564DbzezfKDIOddvZt/mzfPqsjJy\nTcFtPCxcuSsLPUdiNfNeEjMse4BTwLeAPUoIVia5UHML92jSJUBi58H2Ox7bTmKWRe7t4ySmc3VP\nfGU8QOyOx+Jk/jkrIzjnZpIJQQmJnULfW+mxGTNTYGZ/RWJxyU2gkMSCnCPAX6QzrkyWvP+9YLum\nmU0Bw865O6/oJMnM/gb4AYmTWQ3wJWAeeCadcWWBvwN+amafJbGlrgX4BIkmZ7KE5Czex4BvOOfi\naQ4nW3wP+LyZ3SLRTK8Z+H3gX9MaVYYzs3eT2GbdRmK78F+TOEd8Y6WvkTFJAbCexAKcEDBOonHS\nU86559MaVfbR7MDyakncZysDBoGXgEPJlt2yBOfcKTP7APAVEltfrwOf0eKvZb2LRJM4rVdZud8j\nkax/DagEeoB/Af48nUFlgWLgyyQudkaA7wKfd87dOeuypIyuUyAiIiKPju7PiIiICKCkQERERJKU\nFIiIiAigpEBERESSlBSIiIgIoKRAREREkpQUiIiICKCkQERERJKUFIiIiAigpEBERESSlBSIiIgI\nAP8PLrTUOMYf7YoAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -567,7 +567,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -575,11 +575,11 @@ { "data": { "text/plain": [ - "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,\n", - " 1, 0, 1, 1, 0, 1, 1])" + "array([2, 2, 1, 1, 0, 2, 2, 2, 0, 2, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 2, 2, 0,\n", + " 0, 2, 2, 2, 2, 2, 2])" ] }, - "execution_count": 14, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -597,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -605,10 +605,10 @@ { "data": { "text/plain": [ - "0.56666666666666665" + "0.59999999999999998" ] }, - "execution_count": 15, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -617,6 +617,40 @@ "classifier.score(X_test, y_test)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just for fun, let's look at what a Support Vector Machine classifier would look like, before moving onto Probabilistic Graphical Models." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "prediction [0 2 1 2 0 2 1 1 0 1 0 0 0 0 1 1 0 1 1 1 2 0 2 1 1 1 2 0 0 2]\n", + "0.7\n" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.cross_validation import train_test_split\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(data.ix[:, ['length', 'width']].values, data.type.values, test_size=0.2)\n", + "clf = SVC()\n", + "clf.fit(X_train, y_train)\n", + "print(\"prediction\",clf.predict(X_test))\n", + "print(clf.score(X_test, y_test))" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -629,7 +663,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 28, "metadata": { "collapsed": true }, @@ -640,7 +674,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 29, "metadata": { "collapsed": false }, @@ -660,154 +694,142 @@ " \n", " \n", " \n", - " 47\n", + " 0\n", " 5\n", - " 3\n", + " 4\n", " 0\n", " \n", " \n", - " 92\n", - " 6\n", + " 118\n", + " 8\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", - " 5\n", - " 5\n", - " 4\n", - " 0\n", + " 82\n", + " 6\n", + " 3\n", + " 1\n", " \n", " \n", - " 106\n", - " 5\n", - " 2\n", + " 87\n", + " 6\n", " 2\n", + " 1\n", " \n", " \n", - " 40\n", - " 5\n", - " 4\n", - " 0\n", + " 78\n", + " 6\n", + " 3\n", + " 1\n", " \n", " \n", - " 6\n", - " 5\n", + " 116\n", + " 6\n", " 3\n", - " 0\n", + " 2\n", " \n", " \n", - " 10\n", + " 16\n", " 5\n", " 4\n", " 0\n", " \n", " \n", - " 35\n", - " 5\n", - " 3\n", - " 0\n", - " \n", - " \n", - " 22\n", + " 10\n", " 5\n", " 4\n", " 0\n", " \n", " \n", - " 123\n", - " 6\n", - " 3\n", - " 2\n", - " \n", - " \n", - " 139\n", + " 112\n", " 7\n", " 3\n", " 2\n", " \n", " \n", - " 117\n", - " 8\n", - " 4\n", - " 2\n", - " \n", - " \n", " 23\n", " 5\n", " 3\n", " 0\n", " \n", " \n", - " 134\n", - " 6\n", - " 3\n", - " 2\n", - " \n", - " \n", - " 39\n", + " 19\n", " 5\n", - " 3\n", + " 4\n", " 0\n", " \n", " \n", - " 37\n", - " 5\n", + " 96\n", + " 6\n", " 3\n", - " 0\n", - " \n", - " \n", - " 32\n", - " 5\n", - " 4\n", - " 0\n", + " 1\n", " \n", " \n", - " 55\n", + " 64\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 57\n", - " 5\n", + " 68\n", + " 6\n", " 2\n", " 1\n", " \n", " \n", - " 15\n", + " 133\n", " 6\n", + " 3\n", + " 2\n", + " \n", + " \n", + " 76\n", + " 7\n", + " 3\n", + " 1\n", + " \n", + " \n", + " 48\n", + " 5\n", " 4\n", " 0\n", " \n", " \n", - " 146\n", - " 6\n", - " 2\n", + " 139\n", + " 7\n", + " 3\n", " 2\n", " \n", " \n", - " 114\n", + " 128\n", " 6\n", " 3\n", " 2\n", " \n", " \n", - " 102\n", - " 7\n", + " 105\n", + " 8\n", " 3\n", " 2\n", " \n", " \n", - " 78\n", + " 55\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 82\n", + " 4\n", + " 5\n", + " 4\n", + " 0\n", + " \n", + " \n", + " 121\n", " 6\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", " 79\n", @@ -816,214 +838,226 @@ " 1\n", " \n", " \n", - " 71\n", + " 132\n", " 6\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", - " 77\n", + " 108\n", " 7\n", - " 3\n", - " 1\n", + " 2\n", + " 2\n", " \n", " \n", - " 20\n", - " 5\n", + " 88\n", + " 6\n", " 3\n", - " 0\n", + " 1\n", " \n", " \n", - " 16\n", + " 93\n", " 5\n", - " 4\n", - " 0\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", + " 2\n", + " 1\n", " \n", " \n", - " 44\n", + " 43\n", " 5\n", " 4\n", " 0\n", " \n", " \n", - " 147\n", + " 74\n", " 6\n", " 3\n", - " 2\n", + " 1\n", " \n", " \n", - " 100\n", - " 6\n", - " 3\n", - " 2\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 101\n", + " 134\n", " 6\n", " 3\n", " 2\n", " \n", " \n", - " 52\n", - " 7\n", + " 90\n", + " 6\n", " 3\n", " 1\n", " \n", " \n", - " 19\n", + " 21\n", " 5\n", " 4\n", " 0\n", " \n", " \n", - " 4\n", - " 5\n", - " 4\n", - " 0\n", - " \n", - " \n", - " 137\n", + " 113\n", " 6\n", - " 3\n", + " 2\n", " 2\n", " \n", " \n", - " 64\n", + " 70\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 80\n", + " 103\n", " 6\n", + " 3\n", " 2\n", - " 1\n", " \n", " \n", - " 68\n", - " 6\n", + " 109\n", + " 7\n", + " 4\n", " 2\n", - " 1\n", " \n", " \n", - " 97\n", + " 73\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 127\n", - " 6\n", + " 107\n", + " 7\n", " 3\n", " 2\n", " \n", " \n", - " 67\n", - " 6\n", + " 120\n", + " 7\n", " 3\n", - " 1\n", + " 2\n", " \n", " \n", - " 48\n", + " 12\n", " 5\n", - " 4\n", + " 3\n", " 0\n", " \n", " \n", - " 50\n", - " 7\n", - " 3\n", + " 62\n", + " 6\n", + " 2\n", " 1\n", " \n", " \n", - " 136\n", + " 114\n", " 6\n", " 3\n", " 2\n", " \n", " \n", - " 107\n", + " 106\n", + " 5\n", + " 2\n", + " 2\n", + " \n", + " \n", + " 86\n", " 7\n", " 3\n", - " 2\n", + " 1\n", " \n", " \n", - " 108\n", + " 75\n", " 7\n", - " 2\n", - " 2\n", + " 3\n", + " 1\n", " \n", " \n", - " 59\n", - " 5\n", + " 65\n", + " 7\n", " 3\n", " 1\n", " \n", " \n", - " 122\n", - " 8\n", + " 125\n", + " 7\n", " 3\n", " 2\n", " \n", " \n", - " 96\n", + " 53\n", " 6\n", - " 3\n", + " 2\n", " 1\n", " \n", " \n", - " 41\n", + " 117\n", + " 8\n", " 4\n", " 2\n", - " 0\n", " \n", " \n", - " 33\n", - " 6\n", + " 57\n", + " 5\n", + " 2\n", + " 1\n", + " \n", + " \n", + " 46\n", + " 5\n", " 4\n", " 0\n", " \n", " \n", - " 73\n", + " 95\n", " 6\n", " 3\n", " 1\n", " \n", " \n", - " 84\n", - " 5\n", + " 99\n", + " 6\n", " 3\n", " 1\n", " \n", " \n", - " 75\n", - " 7\n", + " 32\n", + " 5\n", + " 4\n", + " 0\n", + " \n", + " \n", + " 94\n", + " 6\n", " 3\n", " 1\n", " \n", " \n", - " 105\n", - " 8\n", + " 129\n", + " 7\n", " 3\n", " 2\n", " \n", " \n", - " 36\n", + " 69\n", " 6\n", - " 4\n", - " 0\n", + " 2\n", + " 1\n", " \n", " \n", - " 53\n", + " 102\n", + " 7\n", + " 3\n", + " 2\n", + " \n", + " \n", + " 149\n", " 6\n", + " 3\n", " 2\n", - " 1\n", " \n", " \n", "\n", @@ -1032,72 +1066,72 @@ ], "text/plain": [ " length width type\n", - "47 5 3 0\n", - "92 6 3 1\n", - "5 5 4 0\n", - "106 5 2 2\n", - "40 5 4 0\n", - "6 5 3 0\n", - "10 5 4 0\n", - "35 5 3 0\n", - "22 5 4 0\n", - "123 6 3 2\n", - "139 7 3 2\n", - "117 8 4 2\n", - "23 5 3 0\n", - "134 6 3 2\n", - "39 5 3 0\n", - "37 5 3 0\n", - "32 5 4 0\n", - "55 6 3 1\n", - "57 5 2 1\n", - "15 6 4 0\n", - "146 6 2 2\n", - "114 6 3 2\n", - "102 7 3 2\n", - "78 6 3 1\n", + "0 5 4 0\n", + "118 8 3 2\n", "82 6 3 1\n", - "79 6 3 1\n", - "71 6 3 1\n", - "77 7 3 1\n", - "20 5 3 0\n", + "87 6 2 1\n", + "78 6 3 1\n", + "116 6 3 2\n", "16 5 4 0\n", - ".. ... ... ...\n", - "44 5 4 0\n", - "147 6 3 2\n", - "100 6 3 2\n", - "101 6 3 2\n", - "52 7 3 1\n", + "10 5 4 0\n", + "112 7 3 2\n", + "23 5 3 0\n", "19 5 4 0\n", - "4 5 4 0\n", - "137 6 3 2\n", + "96 6 3 1\n", "64 6 3 1\n", - "80 6 2 1\n", "68 6 2 1\n", - "97 6 3 1\n", - "127 6 3 2\n", - "67 6 3 1\n", + "133 6 3 2\n", + "76 7 3 1\n", "48 5 4 0\n", - "50 7 3 1\n", - "136 6 3 2\n", - "107 7 3 2\n", + "139 7 3 2\n", + "128 6 3 2\n", + "105 8 3 2\n", + "55 6 3 1\n", + "4 5 4 0\n", + "121 6 3 2\n", + "79 6 3 1\n", + "132 6 3 2\n", "108 7 2 2\n", - "59 5 3 1\n", - "122 8 3 2\n", - "96 6 3 1\n", - "41 4 2 0\n", - "33 6 4 0\n", + "88 6 3 1\n", + "93 5 2 1\n", + "43 5 4 0\n", + "74 6 3 1\n", + ".. ... ... ...\n", + "134 6 3 2\n", + "90 6 3 1\n", + "21 5 4 0\n", + "113 6 2 2\n", + "70 6 3 1\n", + "103 6 3 2\n", + "109 7 4 2\n", "73 6 3 1\n", - "84 5 3 1\n", + "107 7 3 2\n", + "120 7 3 2\n", + "12 5 3 0\n", + "62 6 2 1\n", + "114 6 3 2\n", + "106 5 2 2\n", + "86 7 3 1\n", "75 7 3 1\n", - "105 8 3 2\n", - "36 6 4 0\n", + "65 7 3 1\n", + "125 7 3 2\n", "53 6 2 1\n", + "117 8 4 2\n", + "57 5 2 1\n", + "46 5 4 0\n", + "95 6 3 1\n", + "99 6 3 1\n", + "32 5 4 0\n", + "94 6 3 1\n", + "129 7 3 2\n", + "69 6 2 1\n", + "102 7 3 2\n", + "149 6 3 2\n", "\n", "[120 rows x 3 columns]" ] }, - "execution_count": 17, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1108,7 +1142,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 30, "metadata": { "collapsed": false }, @@ -1138,7 +1172,7 @@ "dtype: float64" ] }, - "execution_count": 18, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -1151,7 +1185,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 31, "metadata": { "collapsed": false }, @@ -1159,11 +1193,11 @@ { "data": { "text/plain": [ - "array([1, 1, 0, 2, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 2, 2, 1, 2, 0, 1, 0,\n", - " 2, 0, 2, 2, 0, 0, 0])" + "array([2, 2, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 0, 0,\n", + " 0, 2, 1, 1, 0, 1, 0])" ] }, - "execution_count": 24, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1185,7 +1219,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 32, "metadata": { "collapsed": false }, @@ -1193,13 +1227,13 @@ { "data": { "text/plain": [ - "array([False, False, True, True, True, False, False, True, True,\n", - " False, True, True, True, True, False, True, True, True,\n", - " True, False, True, True, True, True, True, True, True,\n", + "array([ True, True, False, True, True, True, False, True, True,\n", + " True, True, True, True, True, True, True, True, True,\n", + " False, True, True, True, True, True, False, False, False,\n", " True, True, True], dtype=bool)" ] }, - "execution_count": 25, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1211,7 +1245,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 33, "metadata": { "collapsed": false }, @@ -1220,7 +1254,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.766666666667\n" + "0.8\n" ] } ], @@ -1332,8 +1366,9 @@ } ], "metadata": { + "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1347,7 +1382,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.5" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/notebooks/2. Bayesian Networks.ipynb b/notebooks/2. Bayesian Networks.ipynb index ad66879..c0b673a 100644 --- a/notebooks/2. Bayesian Networks.ipynb +++ b/notebooks/2. Bayesian Networks.ipynb @@ -2,13 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "from IPython.display import Image" + "from IPython.display import Image\n", + "#fix found here: http://stackoverflow.com/questions/26930515/module-not-found-on-ipython-notebook\n", + "import sys\n", + "sys.path.append('/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/')" ] }, { @@ -65,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -76,7 +79,7 @@ "True" ] }, - "execution_count": 6, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -136,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": { "collapsed": false }, @@ -144,14 +147,14 @@ { "data": { "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" ] }, - "execution_count": 7, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -209,7 +212,8 @@ } ], "source": [ - "model.get_cardinality('G')" + "model.get_cardinality('G')\n", + "help(model.get_cardinality)" ] }, { @@ -605,8 +609,9 @@ } ], "metadata": { + "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -620,7 +625,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.4" + "version": "3.5.2" } }, "nbformat": 4, From 0d60ea810cabbfacd8c9a3cf99211e85e6a15c66 Mon Sep 17 00:00:00 2001 From: Eric Schles Date: Thu, 5 Jan 2017 10:42:41 -0500 Subject: [PATCH 2/2] updating --- ...on to Probabilistic Graphical Models.ipynb | 27 ++++++++++--------- notebooks/2. Bayesian Networks.ipynb | 21 ++++++++------- 2 files changed, 25 insertions(+), 23 deletions(-) diff --git a/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb b/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb index 3f62767..22d6a38 100644 --- a/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb +++ b/notebooks/1. Introduction to Probabilistic Graphical Models.ipynb @@ -567,7 +567,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 41, "metadata": { "collapsed": false }, @@ -575,11 +575,11 @@ { "data": { "text/plain": [ - "array([2, 2, 1, 1, 0, 2, 2, 2, 0, 2, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 2, 2, 0,\n", - " 0, 2, 2, 2, 2, 2, 2])" + "array([1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0,\n", + " 1, 1, 1, 1, 1, 1, 2])" ] }, - "execution_count": 16, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -597,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 63, "metadata": { "collapsed": false }, @@ -605,10 +605,10 @@ { "data": { "text/plain": [ - "0.59999999999999998" + "0.73333333333333328" ] }, - "execution_count": 17, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -626,7 +626,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 67, "metadata": { "collapsed": false }, @@ -635,8 +635,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "prediction [0 2 1 2 0 2 1 1 0 1 0 0 0 0 1 1 0 1 1 1 2 0 2 1 1 1 2 0 0 2]\n", - "0.7\n" + "prediction [1 1 1 0 0 2 1 1 1 0 2 1 2 1 0 1 1 2 2 0 0 0 0 0 1 2 0 2 2 2]\n", + "0.733333333333\n" ] } ], @@ -1142,7 +1142,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 50, "metadata": { "collapsed": false }, @@ -1172,7 +1172,7 @@ "dtype: float64" ] }, - "execution_count": 30, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -1245,7 +1245,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 52, "metadata": { "collapsed": false }, @@ -1254,6 +1254,7 @@ "name": "stdout", "output_type": "stream", "text": [ + "30\n", "0.8\n" ] } diff --git a/notebooks/2. Bayesian Networks.ipynb b/notebooks/2. Bayesian Networks.ipynb index c0b673a..feed992 100644 --- a/notebooks/2. Bayesian Networks.ipynb +++ b/notebooks/2. Bayesian Networks.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "metadata": { "collapsed": true }, @@ -195,20 +195,21 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" + "ename": "AttributeError", + "evalue": "'BayesianModel' object has no attribute 'get_cardinality'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_cardinality\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'G'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mhelp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_cardinality\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'BayesianModel' object has no attribute 'get_cardinality'" + ] } ], "source": [