-
Notifications
You must be signed in to change notification settings - Fork 82
Description
Hi!
Thank you so much for this amazing work!
I'm trying to produce the results with your newest codes.
I followed the guidance in README and got beautiful results as follows:
- For 3DMatch_250_prob:
Scene ¦ prec. ¦ rec. ¦ re ¦ te ¦ samples ¦
Kitchen ¦ 0.958 ¦ 0.958 ¦ 2.382 ¦ 0.065 ¦ 449¦
Home 1 ¦ 0.906 ¦ 0.906 ¦ 2.618 ¦ 0.087 ¦ 106¦
Home 2 ¦ 0.761 ¦ 0.761 ¦ 3.299 ¦ 0.085 ¦ 159¦
Hotel 1 ¦ 0.945 ¦ 0.945 ¦ 2.425 ¦ 0.083 ¦ 182¦
Hotel 2 ¦ 0.923 ¦ 0.923 ¦ 2.674 ¦ 0.101 ¦ 78¦
Hotel 3 ¦ 0.808 ¦ 0.808 ¦ 2.450 ¦ 0.074 ¦ 26¦
Study ¦ 0.808 ¦ 0.808 ¦ 2.898 ¦ 0.098 ¦ 234¦
MIT Lab ¦ 0.733 ¦ 0.733 ¦ 2.916 ¦ 0.106 ¦ 45¦
Mean precision: 0.855: +- 0.082
Weighted precision: 0.887
Mean median RRE: 2.708: +- 0.294
Mean median RTE: 0.087: +- 0.013
Inlier ratio w_mutual: 0.467 : +- 0.045
Feature match recall w_mutual: 0.968 : +- 0.024
Inlier ratio wo_mutual: 0.358 : +- 0.039
Feature match recall wo_mutual: 0.958 : +- 0.029
- For 3DMatch_500_prob:
Scene ¦ prec. ¦ rec. ¦ re ¦ te ¦ samples ¦
Kitchen ¦ 0.967 ¦ 0.967 ¦ 1.971 ¦ 0.057 ¦ 449¦
Home 1 ¦ 0.953 ¦ 0.953 ¦ 1.908 ¦ 0.065 ¦ 106¦
Home 2 ¦ 0.780 ¦ 0.780 ¦ 2.552 ¦ 0.081 ¦ 159¦
Hotel 1 ¦ 0.973 ¦ 0.973 ¦ 1.865 ¦ 0.064 ¦ 182¦
Hotel 2 ¦ 0.923 ¦ 0.923 ¦ 2.322 ¦ 0.069 ¦ 78¦
Hotel 3 ¦ 0.808 ¦ 0.808 ¦ 2.752 ¦ 0.046 ¦ 26¦
Study ¦ 0.833 ¦ 0.833 ¦ 2.440 ¦ 0.094 ¦ 234¦
MIT Lab ¦ 0.778 ¦ 0.778 ¦ 2.038 ¦ 0.082 ¦ 45¦
Mean precision: 0.877: +- 0.080
Weighted precision: 0.906
Mean median RRE: 2.231: +- 0.310
Mean median RTE: 0.070: +- 0.014
Inlier ratio w_mutual: 0.510 : +- 0.044
Feature match recall w_mutual: 0.965 : +- 0.022
Inlier ratio wo_mutual: 0.407 : +- 0.043
Feature match recall wo_mutual: 0.957 : +- 0.036
- For 3DMatch_1000_prob:
Scene ¦ prec. ¦ rec. ¦ re ¦ te ¦ samples ¦
Kitchen ¦ 0.976 ¦ 0.976 ¦ 1.845 ¦ 0.052 ¦ 449¦
Home 1 ¦ 0.972 ¦ 0.972 ¦ 1.938 ¦ 0.067 ¦ 106¦
Home 2 ¦ 0.780 ¦ 0.780 ¦ 2.389 ¦ 0.077 ¦ 159¦
Hotel 1 ¦ 0.978 ¦ 0.978 ¦ 1.826 ¦ 0.068 ¦ 182¦
Hotel 2 ¦ 0.949 ¦ 0.949 ¦ 1.800 ¦ 0.069 ¦ 78¦
Hotel 3 ¦ 0.808 ¦ 0.808 ¦ 2.414 ¦ 0.053 ¦ 26¦
Study ¦ 0.846 ¦ 0.846 ¦ 2.227 ¦ 0.090 ¦ 234¦
MIT Lab ¦ 0.778 ¦ 0.778 ¦ 2.281 ¦ 0.070 ¦ 45¦
Mean precision: 0.886: +- 0.085
Weighted precision: 0.916
Mean median RRE: 2.090: +- 0.247
Mean median RTE: 0.068: +- 0.011
Inlier ratio w_mutual: 0.532 : +- 0.044
Feature match recall w_mutual: 0.966 : +- 0.022
Inlier ratio wo_mutual: 0.434 : +- 0.043
Feature match recall wo_mutual: 0.962 : +- 0.030
- For 3DMatch_2500_prob:
Scene ¦ prec. ¦ rec. ¦ re ¦ te ¦ samples ¦
Kitchen ¦ 0.971 ¦ 0.971 ¦ 1.770 ¦ 0.049 ¦ 449¦
Home 1 ¦ 0.972 ¦ 0.972 ¦ 1.883 ¦ 0.064 ¦ 106¦
Home 2 ¦ 0.761 ¦ 0.761 ¦ 2.508 ¦ 0.074 ¦ 159¦
Hotel 1 ¦ 0.984 ¦ 0.984 ¦ 1.805 ¦ 0.060 ¦ 182¦
Hotel 2 ¦ 0.936 ¦ 0.936 ¦ 1.800 ¦ 0.061 ¦ 78¦
Hotel 3 ¦ 0.885 ¦ 0.885 ¦ 2.672 ¦ 0.062 ¦ 26¦
Study ¦ 0.850 ¦ 0.850 ¦ 2.032 ¦ 0.078 ¦ 234¦
MIT Lab ¦ 0.800 ¦ 0.800 ¦ 1.882 ¦ 0.078 ¦ 45¦
Mean precision: 0.895: +- 0.079
Weighted precision: 0.915
Mean median RRE: 2.044: +- 0.327
Mean median RTE: 0.066: +- 0.009
Inlier ratio w_mutual: 0.542 : +- 0.043
Feature match recall w_mutual: 0.966 : +- 0.020
Inlier ratio wo_mutual: 0.444 : +- 0.043
Feature match recall wo_mutual: 0.961 : +- 0.028
- For 3DMatch_5000_prob:
Scene ¦ prec. ¦ rec. ¦ re ¦ te ¦ samples ¦
Kitchen ¦ 0.976 ¦ 0.976 ¦ 1.765 ¦ 0.050 ¦ 449¦
Home 1 ¦ 0.953 ¦ 0.953 ¦ 1.681 ¦ 0.054 ¦ 106¦
Home 2 ¦ 0.748 ¦ 0.748 ¦ 2.293 ¦ 0.073 ¦ 159¦
Hotel 1 ¦ 0.978 ¦ 0.978 ¦ 1.785 ¦ 0.063 ¦ 182¦
Hotel 2 ¦ 0.962 ¦ 0.962 ¦ 1.598 ¦ 0.063 ¦ 78¦
Hotel 3 ¦ 0.846 ¦ 0.846 ¦ 2.511 ¦ 0.058 ¦ 26¦
Study ¦ 0.838 ¦ 0.838 ¦ 1.952 ¦ 0.081 ¦ 234¦
MIT Lab ¦ 0.756 ¦ 0.756 ¦ 1.748 ¦ 0.075 ¦ 45¦
Mean precision: 0.882: +- 0.091
Weighted precision: 0.909
Mean median RRE: 1.917: +- 0.300
Mean median RTE: 0.065: +- 0.010
Inlier ratio w_mutual: 0.535 : +- 0.042
Feature match recall w_mutual: 0.969 : +- 0.019
Inlier ratio wo_mutual: 0.430 : +- 0.041
Feature match recall wo_mutual: 0.957 : +- 0.032
For a summary, the recall rates on 3DMatch are
5000 | 2500 | 1000 | 500 | 250 |
---|---|---|---|---|
88.2 | 89.5 | 88.6 | 87.7 | 85.5 |
However, I find that you have fixed a bug and got a higher performance, as follows,
which is slightly better than what I produced with your newest codes. What's more, It seems like the results I produced are closer to the ones before you fixed the bug as follows:
Then, I try producing the results another time. This time, I got
5000 | 2500 | 1000 | 500 | 250 |
---|---|---|---|---|
88.6 | 87.6 | 88.8 | 86.8 | 85.3 |
which is still closer to the results before fixing the bug.
To verify I got the right codes, I downloaded your released weight and test. It seems the results are correct and have few differences with the results you updated after fixing the bug.
5000 | 2500 | 1000 | 500 | 250 |
---|---|---|---|---|
89.0 | 89.7 | 90.2 | 90.1 | 85.7 |
This has confused me for a long time. Could you help me figure out what's wrong with my training phase?
I run your codes on one 2080Ti without any modification on the config.
Thanks a lot!